8.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線的斜率為$\sqrt{2}$,且右焦點與拋物線${y^2}=4\sqrt{3}x$的焦點重合,則該雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{2}=1$B.$\frac{x^2}{3}-\frac{y^2}{2}=1$C.$\frac{x^2}{2}-{y^2}=1$D.${x^2}-\frac{y^2}{2}=1$

分析 確定拋物線的焦點坐標,利用雙曲線的性質(zhì),可得幾何量的關(guān)系,從而可得雙曲線的方程.

解答 解:∵雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線的斜率為$\sqrt{2}$,且右焦點與拋物線${y^2}=4\sqrt{3}x$的焦點重合,
拋物線${y^2}=4\sqrt{3}x$的焦點坐標F($\sqrt{3}$,0),雙曲線漸近線為y=±$\frac{a}$x,
∴$\left\{\begin{array}{l}{c=\sqrt{3}}\\{\frac{a}=\sqrt{2}}\\{{a}^{2}+^{2}={c}^{2}}\end{array}\right.$,a=1,b=$\sqrt{2}$,c=$\sqrt{3}$,
∴該雙曲線的方程為${x}^{2}-\frac{{y}^{2}}{2}$=1.

點評 本題考查雙曲線的求法,是中檔題,解題時要認真審題,注意雙曲線、拋物線性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=sin(2x+φ)x∈R,φ∈(0,π),若圖象關(guān)于點($\frac{π}{3}$,0)對稱,則φ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.定義max$\left\{{a,b}\right\}=\left\{\begin{array}{l}a(a≥b)\\ b(a<b)\end{array}$,已知實數(shù)x,y滿足x2+y2≤1,設z=max{x+y,2x-y},則z的取值范圍是[$\frac{3\sqrt{5}}{5}$,$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設F1、F2分別是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左,右焦點,P為橢圓上任一點,點M的坐標為(3,3),則|PM|-|PF2|的最小值為( 。
A.5B.$\sqrt{13}$C.1D.$-\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=2x2-4x-3,(0<x<3)的值域為(  )
A.(-3,3)B.(-5,-3)C.(-5,3)D.(-5,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中,值域為(0,+∞)的是( 。
A.$y=\sqrt{x}$B.y=2|x|C.y=x2+x+1D.y=2-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.若函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}-bx+4$在點P(2,f(2))處的切線為$y=4x-\frac{10}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)討論方程f(x)=k實數(shù)解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)=2sin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)有兩個相鄰的零點:-$\frac{π}{6}$,$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)若f(α)=$\frac{2\sqrt{2}}{3}$,求cos6α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知e是自然對數(shù)的底數(shù),函數(shù)f(x)的定義域為R,2f(x)•2f′(x)>2,f(0)=27${\;}^{\frac{2}{3}}$-2${\;}^{lo{{g}_{2}}{3}}$×log2$\frac{1}{8}$+2lg($\sqrt{3+\sqrt{5}}$+$\sqrt{3-\sqrt{5}}$)-11,則不等式$\frac{f(x)-1}{{e}^{ln7-x}}$>1的解集為(  )
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

同步練習冊答案