5.在等差數(shù)列{an}中,已知a2與a4是方程x2-6x+8=0的兩個根,若a4>a2,則a2017+a1=( 。
A.2018B.2017C.2016D.2015

分析 x2-6x+8=0,解得x=2,4,由a2與a4是方程x2-6x+8=0的兩個根,a4>a2,可得a4=4,a2=2.再利用通項公式即可得出.

解答 解:x2-6x+8=0,解得x=2,4,
由a2與a4是方程x2-6x+8=0的兩個根,a4>a2,
∴a4=4,a2=2.
∴公差d=$\frac{1}{2}×(4-2)$=1,a1=2-d=1.
∴an=1+n-1=n.
則則a2017+a1=2017+1=2018.
故選:A.

點評 本題考查了等差數(shù)列的通項公式、方程的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)向量$\overrightarrow{m}$=(sinx,-1),向量$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函數(shù)f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求f(x)的最小正周期T;
(2)在△ABC中,角A、B、C所對的邊分別為a、b、c,a=2$\sqrt{3}$,c=4,若f(x)在[0,$\frac{π}{2}$]上的最大值為f(A),求A和b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示是求等比數(shù)列前n項和的流程圖,則空白處應(yīng)填(  )
A.q=1B.q≠1C.q>1D.q<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x+(1-a)lnx+$\frac{a}{x}$(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x0∈[1,e],使得f(x0)≤2成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a∈R,函數(shù)$f(x)=\frac{{{e^x}-a}}{x}-alnx$(e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)函數(shù)f(x)是否存在極大值,若存在,求極大值點,若不存在,說明理由;
(Ⅱ)設(shè)$g(x)=\frac{e^x}{1+xlnx}$,證明:對任意x>0,g(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知直線l與x軸不垂直,且直線l過點M(2,0)與拋物線y2=4x交于A,B兩點,則$\frac{1}{{{{|{AM}|}^2}}}+\frac{1}{{{{|{BM}|}^2}}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an}中,a2=4,a5=7,m,n∈N+,滿足a1m+a2m+a3m+…+anm=an+1m,則n等于( 。
A.1和2B.2和3C.3和4D.2和4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,a、b、c分別是角A、B、C的對邊.若$\frac{sinC}{sinA}=2$,b2-a2=$\frac{3}{2}$ac,則cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C的兩焦點為F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),離心率e=$\frac{\sqrt{6}}{3}$.
(1)求此橢圓C的方程;
(2)過點M(0,t)的直線l(斜率存在時)與橢圓C交于P,Q兩點,設(shè)D為橢圓C與y軸負(fù)半軸的交點,且|$\overrightarrow{DP}$|=|$\overrightarrow{DQ}$|.求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案