【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.

(1) 求圖中的值;

(2) 已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設(shè)其中的女生人數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望.

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析:

(1)利用頻率分布直方圖的面積為1得到關(guān)于 的方程,解方程即可求得實數(shù) 的值;

(2)首先確定該分布列為超幾何分布,然后寫出分布列求解均值即可.

試題解析:

(Ⅰ)由,解得

(Ⅱ)滿意度評分值在[90,100]內(nèi)有人,

其中男生6人,女生3人.

X的值可以為0,1,2,3.

, ,

,

X分布列如下:

X

0

1

2

3

P

所以X的期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左頂點為,右焦點為, 為原點, 軸上的兩個動點,且,直線分別與橢圓交于 兩點.

 

(Ⅰ)求的面積的最小值;

(Ⅱ)證明: , 三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

)討論函數(shù)的單調(diào)性;

)若函數(shù)上有最小值,且最小值為,滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別求出適合下列條件的直線方程:
(Ⅰ)經(jīng)過點且在x軸上的截距等于在y軸上截距的2倍;
(Ⅱ)經(jīng)過直線2x+7y﹣4=0與7x﹣21y﹣1=0的交點,且和A(﹣3,1),B(5,7)等距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面△ABC是等邊三角形,側(cè)面為正方形,且平面ABC, 為線段上的一點.

(Ⅰ) 若∥平面A1CD,確定D的位置,并說明理由;

(Ⅱ) 在(Ⅰ)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,x∈R,且f(x)為奇函數(shù). (I)求a的值及f(x)的解析式;
(II)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的定義域為集合A,y=﹣x2+2x+2a的值域為B.
(1)若a=2,求A∩B
(2)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形, 底面, 分別是的中點.

(1)在圖中畫出過點的平面,使得平面(須說明畫法,并給予證明);

(2)若過點的平面平面且截四棱錐所得截面的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出直線的極坐標方程與曲線的直角坐標方程;

(2)已知與直線平行的直線過點,且與曲線交于兩點,試求

查看答案和解析>>

同步練習(xí)冊答案