【題目】有4個不同的小球,4個不同的盒子,現(xiàn)要把球全部放進(jìn)盒子內(nèi).
(1)恰有1個盒子不放球,共有多少種方法?
(2)恰有2個盒子不放球,共有多少種方法?
【答案】
(1)解:確定1個空盒有C 種方法;選2個球放在一起有C 種方法.
把放在一起的2個小球看成“一個”整體,則意味著將3個球分別放入3個盒子內(nèi),有A 種方法.故共有C C A =144種方法
(2)解:完成這件事情有兩類辦法:第一類,一個盒子放3個小球,一個盒子放1個小球,兩個盒子不放小球有C41C43C31=48種方法;
第二類,有兩個盒子各放2個小球,另兩個盒子不放小球有C42C42=36種方法;
由分類計數(shù)原理,共有48+36=84種放法
【解析】(1)先確定1個空盒,再選2個球放在一起方法.把放在一起的2個小球看成“一個”整體,則意味著將3個球分別放入3個盒子內(nèi),根據(jù)分步計數(shù)原理可得.(2)先分類,把四個小球先分成兩組,每組兩個小球,或者是把四個小球分成兩組,每組一個和三個,分完小組后再進(jìn)行排列,從4個盒中選兩個位置排列,得到結(jié)果.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①△ABC中角A,B,C的對邊分別是a,b,c,若a>b,則cosA<cosB,cos2A<cos2B;
②a,b∈R,若a>b,則a3>b3;
③若a<b,則 < ;
④設(shè)等差數(shù)列{an}的前n項和為Sn , 若S2016﹣S1=1,則S2017>1.
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣3x+5,若關(guān)于x的方程f(x)=a至少有兩個不同實根,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x.
(1)求曲線y=f(x)在點x=2處的切線方程;
(2)若過點A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x.
(1)求曲線y=f(x)在點x=2處的切線方程;
(2)若過點A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),又是一個常數(shù),已知或時, 只有一個實根,當(dāng)時, 有三個相異實根,給出下列命題:
①和有一個相同的實根;
②和有一個相同的實根;
③的任一實根大于的任一實根;
④的任一實根小于的任一實根.
其中正確命題的個數(shù)為( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是橢圓的左、右焦點.
(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標(biāo);
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 已知曲線y=f(x)
在處的切線與直線垂直。
(1) 求的值;
(2) 若對任意x≥1,都有,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com