(本小題滿分12分)
已知函數(shù)
恰有一個極大值點和一個極小值點,其中的一個極值點是
(I)求函數(shù)
的另一個極值點;
(II)記函數(shù)
的極大值為M、極小值為
m,若
的值.
(Ⅰ)
,……………………1分
令
即
,方程有兩個不等實根
,
,
由根與系數(shù)的關系知
,得
,
即函數(shù)
的另
一極值點為
。 ……………………3分
(Ⅱ)由
得
,
∵
且
,∴
, ……………………4分
當
則
;當
則
。
當
時,
,
當
或
時,
,當
時,
,
∴函數(shù)
在區(qū)間
和
上單調遞減;在區(qū)間
上單調遞增,
∴函數(shù)
的極大值為
,……………………5分
極小值為
,……………………6分
∵
,∴
,即
,注意到
,
則
。 ……………………8分
當
時,
,
當
或
時,
,當
時,
,
∴函數(shù)
在區(qū)間
和
上單調遞增;在區(qū)間
上是調遞減,
∴極大值為
,……………………9分
函數(shù)
的極小值為
, ……………………10分
∵
,∴
,即
即
,注意到
,
所以
。 ……………………11分
綜上,實數(shù)
的取值范圍是(0,1)
(1,
)。 ……………………12分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)設函數(shù)
(
)的圖象關于原點對稱,且
時,
取極小值
,
①求
的值;
②當
時,圖象上是否存在兩點,使得過此兩點處的切線互相垂直?試證明你的結論。
③若
,求證:
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知函數(shù)
其中e為自然對數(shù)的底數(shù),a,b,c為常數(shù),若函數(shù)
且
(1)求實數(shù)b,c的值;
(2)若函數(shù)
在區(qū)間[1,2]上是增函數(shù),求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)已知函數(shù)
在
處取得極值
,其中
為常數(shù).
(1)求
的值;
(2)討論函數(shù)
的單調區(qū)間;
(3)若對任意
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分) 設函數(shù)
.
(Ⅰ)當
時,討論函數(shù)
的單調性;
(Ⅱ)若函數(shù)
僅在
x=0處有極值,試求
a的取值范圍;
(Ⅲ)若對于任何
上恒成立,求
b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
,則
取得極值時的
x值為
▲ .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)
的單調增區(qū)間是___________________________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
,關于
給出下列四個命題;
①當
時,
;
②當
時,
單調遞增;
③函數(shù)
的圖象不經(jīng)過第四象限;
④方程
有且只有三個實數(shù)解.
其中全部真命題的序號是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
7.函數(shù)
在區(qū)間[0,3]上的最大值與最小值分別是( )
A.5,– 15 | B.5,– 4 | C.– 4,– 15 | D.5,– 16 |
查看答案和解析>>