分析 將雙曲線的方程化為標準方程,求得a,b,c,可得實軸長2a,漸近線方程,求得圓的圓心和半徑,運用直線和圓相切的條件:d=r,解方程可得m的值.
解答 解:雙曲線9x2-16y2=-144即為
$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1,
可得a=3,b=4,c=$\sqrt{{a}^{2}+^{2}}$=5,
實軸長為2a=6;
漸近線方程為y=±$\frac{3}{4}$x,即為3x±4y=0,
圓x2+y2-2x+m=0的圓心為(1,0),半徑為$\sqrt{1-m}$,
由直線和圓相切可得$\frac{3}{\sqrt{9+16}}$=$\sqrt{1-m}$,解得m=$\frac{16}{25}$.
故答案為:6,$\frac{16}{25}$.
點評 本題考查雙曲線的實軸長和漸近線與圓相切,注意運用雙曲線的基本量的關(guān)系和直線和圓相切的條件:d=r,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 3 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (e,+∞) | B. | (0,e) | C. | $(0,\frac{1}{e})∪(1,e)$ | D. | $(\frac{1}{e},e)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1+x2+x3>0 | B. | x1+x2+x3<0 | C. | f(x1+x2+x3)≥0 | D. | f(x1+x2+x3)≤0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com