長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn).
(1)求證:直線AE⊥平面A1D1E;
(2)求三棱錐A-A1D1E的體積;
(3)求二面角E-AD1-A1的平面角的大。

解:(1)依題意:AE⊥A1E,AE⊥A1D1,則AE⊥平面A1D1E.
(2)
(3)取AA1的中點(diǎn)O,連OE,則EO⊥AA1、EO⊥A1D1
所以EO⊥平面ADD1A1
過O在平面ADD1A1中作OF⊥AD1,交AD1于F,連EF,則AD1⊥EF,
所以∠EFO為二面角E-AD1-A1的平面角.
在△AFO中,

分析:(1)證出AE⊥A1E,AE⊥A1D1,則可證明AE⊥平面A1D1E.
(2),代入數(shù)據(jù)計(jì)算即可.
(3)取AA1的中點(diǎn)O,過O在平面ADD1A1中作OF⊥AD1,交AD1于F,連EF,∠EFO為二面角E-AD1-A1的平面角.在△AFO中 求解即可.
點(diǎn)評:本題主要考查空間角,體積的計(jì)算,線面垂直,面面垂直的定義,性質(zhì)、判定,考查了空間想象能力、計(jì)算能力,分析解決問題能力.空間問題平面化是解決空間幾何體問題最主要的思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在長方體ABCD-A1B1C1D1中,AB=BC=2,過A1、C1、B三點(diǎn)的平面截去長方體的一個(gè)角后,得到如圖所示的幾何體ABCD-A1C1D1,且這個(gè)幾何體的體積為10.
(1)求棱A1A的長;
(2)求點(diǎn)D到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,長方體ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中點(diǎn),N是B1C1中點(diǎn).
(1)求證:A1、M、C、N四點(diǎn)共面;
(2)求證:BD1⊥MCNA1
(3)求證:平面A1MNC⊥平面A1BD1;
(4)求A1B與平面A1MCN所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 則三棱錐A1-ABC的體積為( 。
A、10B、20C、30D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知多面體ABCD-A1B1C1D1,它是由一個(gè)長方體ABCD-A'B'C'D'切割而成,這個(gè)長方體的高為b,底面是邊長為a的正方形,其中頂點(diǎn)A1,B1,C1,D1均為原長方體上底面A'B'C'D'各邊的中點(diǎn).
(1)若多面體面對角線AC,BD交于點(diǎn)O,E為線段AA1的中點(diǎn),求證:OE∥平面A1C1C;
(2)若a=4,b=2,求該多面體的體積;
(3)當(dāng)a,b滿足什么條件時(shí)AD1⊥DB1,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn).
(1)求證:A1E⊥平面ADE;
(2)求三棱錐A1-ADE的體積.

查看答案和解析>>

同步練習(xí)冊答案