【題目】已知數(shù)列11,2,12,41,2,4,8,1,2,48,16, ,其中第一項(xiàng)是20,接下來的兩項(xiàng)是2021,再接下來的三項(xiàng)是2021,22依此類推. 設(shè)該數(shù)列的前項(xiàng)和為,

規(guī)定:若 ,使得 ),則稱為該數(shù)列的“佳冪數(shù)”.

Ⅰ)將該數(shù)列的佳冪數(shù)從小到大排列,直接寫出前3個(gè)佳冪數(shù);

Ⅱ)試判斷50是否為佳冪數(shù),并說明理由;

III)(i求滿足>70的最小的佳冪數(shù);

ii)證明:該數(shù)列的佳冪數(shù)有無數(shù)個(gè).

【答案】1,2,3;(見解析;III)(i95ii)見解析.

【解析】試題分析:(1) (2)先根據(jù)題意確定前9項(xiàng)有45個(gè)數(shù),所以,不能表示為,因此不是“佳冪數(shù)”(3)i因?yàn)?/span>,所以, 結(jié)合條件確定t的最小值,解得最小的佳冪數(shù)ii)由佳冪數(shù)有無數(shù)個(gè)

試題解析:(12,3;

)由題意可得,數(shù)列如下:

1:1,2:1,2;第3組:1,2,4; k組: .

則該數(shù)列的前項(xiàng)的和為:

當(dāng)時(shí), ,

由于,對(duì) ,故50不是“佳冪數(shù)”.

III)(i,要使,有,

此時(shí),

所以是第組等比數(shù)列的部分項(xiàng)的和,

設(shè)

所以,則,此時(shí),

所以對(duì)應(yīng)滿足條件的最小“佳冪數(shù)”.

ii)由i知:

當(dāng),且取任意整數(shù)時(shí),可得“佳冪數(shù)”,

所以,該數(shù)列的“佳冪數(shù)”有無數(shù)個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長(zhǎng)方形中, 中點(diǎn)(圖1).將沿折起,使得(圖2)在圖2中:

(1)求證:平面 平面;

(2)在線段上是否存點(diǎn),使得二面角為大小為,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),

在此幾何體中,給出下面四個(gè)結(jié)論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC平面BCE平面PAD.

其中正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)與短軸兩個(gè)端點(diǎn)的連線互相垂直.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn)為橢圓的上一點(diǎn),過原點(diǎn)且垂直于的直線與直線交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠ABC60°,為正三角形,且側(cè)面PAB底面ABCD. E,M分別為線段AB,PD的中點(diǎn).

(I)求證:PE⊥平面ABCD

II求證:PB//平面ACM;

(III)在棱CD上是否存在點(diǎn)G,使平面GAM⊥平面ABCD,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市高中全體學(xué)生參加某項(xiàng)測(cè)評(píng),按得分評(píng)為兩類(評(píng)定標(biāo)準(zhǔn)見表1).根據(jù)男女學(xué)生比例,使用分層抽樣的方法隨機(jī)抽取了10000名學(xué)生的得分?jǐn)?shù)據(jù),其中等級(jí)為的學(xué)生中有40%是男生,等級(jí)為的學(xué)生中有一半是女生.等級(jí)為的學(xué)生統(tǒng)稱為類學(xué)生,等級(jí)為的學(xué)生統(tǒng)稱為類學(xué)生.整理這10000名學(xué)生的得分?jǐn)?shù)據(jù),得到如圖2所示的頻率分布直方圖,

類別

得分(

表1

(I)已知該市高中學(xué)生共20萬人,試估計(jì)在該項(xiàng)測(cè)評(píng)中被評(píng)為類學(xué)生的人數(shù);

(Ⅱ)某5人得分分別為45,50,55,75,85.從這5人中隨機(jī)選取2人組成甲組,另外3人組成乙組,求“甲、乙兩組各有1名類學(xué)生”的概率;

(Ⅲ)在這10000名學(xué)生中,男生占總數(shù)的比例為51%, 類女生占女生總數(shù)的比例為, 類男生占男生總數(shù)的比例為,判斷的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線與交于點(diǎn).

1)求點(diǎn)的軌跡方程;

2)設(shè)點(diǎn)的軌跡為曲線,過點(diǎn)且斜率不為0的直線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明直線過定點(diǎn),并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)求過點(diǎn)的切線方程;

(2)當(dāng)時(shí),求函數(shù)的最大值;

(3)證明:當(dāng)時(shí),不等式對(duì)任意均成立(其中為自然對(duì)數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足,當(dāng)時(shí), ,函數(shù).若對(duì)任意,存在,不等式成立,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案