分析 根據(jù)圓C上存在兩點(diǎn)A、B使得PA=2AB,則點(diǎn)P到圓上的點(diǎn)的最小距離應(yīng)小于或等于4r.
P到圓心C(-1,1)的距離小于或等于$\sqrt{(-1-m)^{2}+(1-2m+4)^{2}}≤5$,設(shè)P(m,2m-4)
根據(jù)兩點(diǎn)間的距離公式解得m
解答 解:由題意可得得圓心C(-1,1),根據(jù)圓C上存在兩點(diǎn)A、B使得PA=2AB,∵AB≤2r=2,則點(diǎn)P到圓上的點(diǎn)的最小距離應(yīng)小于或等于4.
P到圓心C(-1,1)的距離小于或等于$\sqrt{(-1-m)^{2}+(1-2m+4)^{2}}≤5$,設(shè)P(m,2m-4)
根據(jù)兩點(diǎn)間的距離公式有$\sqrt{(-1-m)^{2}+(1-2m+4)^{2}}≤5$,解得9-2$\sqrt{19}$$≤m≤9+2\sqrt{19}$.
故答案為:[9-2$\sqrt{19}$,9+2$\sqrt{19}$]
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,判斷點(diǎn)P到圓上的點(diǎn)的最小距離應(yīng)小于或等于半徑的2倍,是解題的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\frac{{5\sqrt{15}}}{3}$或$\sqrt{15}$ | C. | $\sqrt{5}$ | D. | $\frac{25}{3}$或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com