分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的端點(diǎn)值和極值,通過討論m的范圍,求出函數(shù)f(x)的圖象與直線y=m的公共點(diǎn)個(gè)數(shù)即可.
解答 解:(Ⅰ)f(x)=(x2-x+1)ex,
f′(x)=x(x+1)ex,
令f′(x)>0,解得:x>0或x<-1,
令f′(x)<0,解得:-1<x<0,
故f(x)在(-∞,-1)遞增,在(-1,0)遞減,在(0,+∞)遞增;
(Ⅱ)由(Ⅰ)f(x)在[-2,-1)遞增,在(-1,0)遞減,在(0,+∞)遞增,
而f(-2)=$\frac{7}{{e}^{2}}$,f(-1)=$\frac{3}{e}$,f(0)=1<f(-2),
故m>$\frac{3}{e}$時(shí),f(x)的圖象與直線y=m的公共點(diǎn)個(gè)數(shù)是1個(gè),
m=$\frac{3}{e}$時(shí),f(x)的圖象與直線y=m的公共點(diǎn)個(gè)數(shù)是2個(gè),
1<m<$\frac{3}{e}$時(shí),f(x)的圖象與直線y=m的公共點(diǎn)個(gè)數(shù)是3個(gè),
m=1時(shí),f(x)的圖象與直線y=m的公共點(diǎn)個(gè)數(shù)是2個(gè),
$\frac{7}{{e}^{3}}$≤m<1時(shí),f(x)的圖象與直線y=m的公共點(diǎn)個(gè)數(shù)是1個(gè);
m<$\frac{7}{{e}^{3}}$時(shí),f(x)的圖象與直線y=m的公共點(diǎn)個(gè)數(shù)是0個(gè).
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$ | B. | 向左平移$\frac{π}{12}$ | C. | 向右平移$\frac{π}{6}$ | D. | 向右平移$\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{17}$ | B. | 4 | C. | $\sqrt{15}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{3}$ | B. | $\frac{\sqrt{6}}{4}$ | C. | -$\frac{2\sqrt{2}}{3}$ | D. | $\frac{3\sqrt{2}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 5 | C. | $\sqrt{5}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4032 | B. | 2016 | C. | 2017 | D. | 4034 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com