分析 (1)根據(jù)二倍角公式求出cosB,再求出sinB,根據(jù)向量的數(shù)量積和三角形的面積公式即可求出答案;
(2)根據(jù)余弦定理即可求出答案.
解答 解;(1)∵sin$\frac{B}{2}$=$\frac{\sqrt{5}}{5}$,
∴cosB=1-2sin2$\frac{B}{2}$=1-$\frac{2}{5}$=$\frac{3}{5}$,
∴sinB=$\frac{4}{5}$,
∵$\overrightarrow{BA}$•$\overrightarrow{BC}$=6,
∴$\overrightarrow{BA}$•$\overrightarrow{BC}$=|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|•cosB=6,
∴|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|=10,
∴S△ABC=$\frac{1}{2}$|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|•sinB=$\frac{1}{2}×$10×$\frac{4}{5}$=4;
(2)由(1)可知ac=10,
又c+a=8,
又余弦定理可得,b2=a2+c2-2accosB=(a+c)2-2ac-2ac×$\frac{3}{5}$=64-$\frac{16}{5}$×10=32,
∴b=4$\sqrt{2}$.
點(diǎn)評 本題考查了余弦定理三角形的面積公式和向量的數(shù)量積的運(yùn)算,以及三角函數(shù)的化簡,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | 6 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com