設(shè),函數(shù),
(1)若是函數(shù)的極值點(diǎn),求的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的最值.
(3)是否存在實(shí)數(shù),使得函數(shù) 在上為單調(diào)函數(shù),若是,求出的取值范圍,若不是,請(qǐng)說(shuō)明理由。

(1)(2)最大值55最小值-8(3)不存在

解析試題分析:解:(1)  
(2)  
  最大值55最小值-8
(3) 要使得函數(shù) 在上單調(diào)遞增

考點(diǎn):導(dǎo)數(shù)的應(yīng)用
點(diǎn)評(píng):導(dǎo)數(shù)常應(yīng)用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中是常數(shù)且.
(1)當(dāng)時(shí),在區(qū)間上單調(diào)遞增,求的取值范圍;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)設(shè)是正整數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,
(1)討論的單調(diào)區(qū)間;
(2)若對(duì)任意的,且,有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,一矩形鐵皮的長(zhǎng)為8cm,寬為5cm,在四個(gè)角上截去四個(gè)相同的小正方形,制成一個(gè)無(wú)蓋的小盒子,問(wèn)小正方形的邊長(zhǎng)為多少時(shí),盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若函數(shù)圖像上的點(diǎn)到直線距離的最小值為,求的值;
(2)關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)的取值范圍;
(3)對(duì)于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)
“分界線”.設(shè),試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間[0,3]上的最大值與最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)上無(wú)零點(diǎn),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)).
(1)當(dāng)時(shí),求證:上單調(diào)遞增;
(2)當(dāng)時(shí),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案