【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值;
(2)已知關于的不等式對任意的恒成立,求實數(shù)的取值范圍.
【答案】(1)答案不唯一,見解析;(2)
【解析】
(1)求導后,分和兩種情況考慮的單調(diào)性;利用導數(shù)求的極值即可;
(2)對任意的恒成立,等價于對任意的恒成立,設,利用導數(shù)研究的單調(diào)性以及最值,從而可得到結(jié)論.
(1)因為,∴.
當,即時,恒成立,在區(qū)間上單調(diào)遞增.
當,即時,令,則或,單調(diào)遞增;令,則,單調(diào)遞減.
綜上,當時,的單調(diào)遞增區(qū)間為;當時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;
因為,()
所以,所以當時,,單調(diào)遞增,
當時,,單調(diào)遞減,所以,無最大值.
(2)對任意的恒成立,
即對任意的恒成立.
令,,則.
當時,因為,所以,所以,在區(qū)間上單調(diào)遞減.所以,符合題意.
當時,令,得,令,得,
所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
所以
由(1)知,即在上恒成立,不符合題意.
綜上,實數(shù)的取值范圍為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)零點的個數(shù);
(3)若存在兩個不同的零點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)在“精準扶貧”行動中,決定幫助一貧困山區(qū)將水果運出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內(nèi)把180噸水果運輸?shù)交疖囌,則通過合理調(diào)配車輛運送這批水果的費用最少為______元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的首項為,公差為,等比數(shù)列的首項為,公比為,其中,且.
(1)求證:,并由推導的值;
(2)若數(shù)列共有項,前項的和為,其后的項的和為,再其后的項的和為,求的比值.
(3)若數(shù)列的前項,前項、前項的和分別為,試用含字母的式子來表示(即,且不含字母)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義符號函數(shù),已知函數(shù).
(1)已知,求實數(shù)的取值集合;
(2)當時,在區(qū)間上有唯一零點,求的取值集合;
(3)已知在上的最小值為,求正實數(shù)的取值集合;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點,分別是橢圓:的左、右焦點,且橢圓上的點到點的距離的最小值為.點M、N是橢圓上位于軸上方的兩點,且向量與向量平行.
(1)求橢圓的方程;
(2)當時,求△的面積;
(3)當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】孔子曰:溫故而知新.數(shù)學學科的學習也是如此.為了調(diào)查數(shù)學成績與及時復習之間的關系,某校志愿者展開了積極的調(diào)查活動:從高三年級640名學生中按系統(tǒng)抽樣抽取40名學生進行問卷調(diào)查,所得信息如下:
數(shù)學成績優(yōu)秀(人數(shù)) | 數(shù)學成績合格(人數(shù)) | |
及時復習(人數(shù)) | 20 | 4 |
不及時復習(人數(shù)) | 10 | 6 |
(1)張軍是640名學生中的一名,他被抽中進行問卷調(diào)查的概率是多少(用分數(shù)作答);
(2)根據(jù)以上數(shù)據(jù),運用獨立性檢驗的基本思想,研究數(shù)學成績與及時復習的相關性.
參考公式:,其中為樣本容量
臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)試判斷函數(shù)的奇偶性,并說明理由;
(2)若,求在上的最大值;
(3)若,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點是拋物線的焦點,直線與相交于不同的兩點.
(1)求的方程;
(2)若直線經(jīng)過點,求的面積的最小值(為坐標原點);
(3)已知點,直線經(jīng)過點,為線段的中點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com