13.已知tanα=-2,則$\frac{1}{4}$sin2α+$\frac{2}{5}$cos2α=$\frac{7}{25}$.

分析 方法1:利用“弦化切”及其平方關(guān)系即可解決.
方法2:利用“切化弦”的轉(zhuǎn)化思想,找到sinα與cosα的關(guān)系,利用sin2α+cos2α=1的平方關(guān)系,即可得到答案.

解答 解法1:
解:∵sin2α+cos2α=1,tanα=-2,
∴$\frac{1}{4}$sin2α+$\frac{2}{5}$cos2α=$\frac{\frac{1}{4}si{n}^{2}α+\frac{2}{5}co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{\frac{1}{4}ta{n}^{2}α+\frac{2}{5}}{ta{n}^{2}α+1}$=$\frac{\frac{1}{4}×(-2)^{2}+\frac{2}{5}}{1+(-2)^{2}}$=$\frac{7}{25}$
解法2:
解:∵tanα=-2,∴sinα=-2cosα⇒sin2α=4cos2α
又∵sin2α+cos2α=1
∴4cos2α+cos2α=1
解得:cos2α=$\frac{1}{5}$,sin2α=$\frac{4}{5}$
∴$\frac{1}{4}$sin2α+$\frac{2}{5}$cos2α=$\frac{1}{4}×\frac{4}{5}+\frac{2}{5}×\frac{1}{5}=\frac{7}{25}$

點(diǎn)評 本題考查了“弦化切”或“切化弦”的轉(zhuǎn)化思想,及其同角三角函數(shù)基本關(guān)系式,考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)z滿足z-i=3+i,則i•$\overline z$=( 。
A.3+2iB.2+3iC.3-2iD.-2+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知集合A={x|x-$\frac{1}{x}$=0,x∈R},則滿足A∪B={-1,0,1}的集合B的個數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若$\frac{1}{sinα}$+$\frac{1}{cosα}$=$\sqrt{3}$,則sinαcosα=( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$或1D.$\frac{1}{3}$或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知某算法的算法框圖如圖所示,若將輸出的(x,y)值依次記為(x1,y1),(x2,y2),…,(xn,yn),…,則程序結(jié)束時,共輸出(x,y)的組數(shù)為( 。
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{1+lo{g}_{a}(x+1),x≥0}\end{array}\right.$(a>0且a≠1),g(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+4ax.若同時滿足條件:①f(x)在R上單調(diào)遞減;②g(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是($\frac{1}{2}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={1,3,4},集合B={2,4,5},則A∪B=( 。
A.{2,4,5}B.{1,3,4,5}C.{1,2,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知命題p:函數(shù)f(x)=x2+2ax+2a的值域?yàn)閇0,+∞),
命題q:方程(ax-1)(ax+2)=0在[-1,1]上有解,
若命題“p或q”是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.云南省2014年全省高中男生身高統(tǒng)計調(diào)查顯示:全省男生的身高服從正態(tài)分布N(170.5.16).高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于175.5cm和187.5cm之間,將測量結(jié)果按如下方式分成6組:第 一組[157.5,162.5),第二組[162.5,167.5),…第 6 組(182.5,187.5],按上述分組方法得到的頻率分布直方圖如圖所示.
(1)試評估我校高三年級男生在全省高中男生中的平均身高狀況;
(2)求這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(3)在這50名男生身高在177.5cm.以上(含177.5cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全省前130名的人數(shù)記為ζ,求ζ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ζ〜N(μ,σ2
P(μ-σ<ξ≤μ+σ)=0.6826,
p(μ-2σ<ξ≤μ+2σ)=0.9544
Pμ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

同步練習(xí)冊答案