3.復(fù)數(shù)z滿足z-i=3+i,則i•$\overline z$=( 。
A.3+2iB.2+3iC.3-2iD.-2+3i

分析 利用共軛復(fù)數(shù)和復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:∵z-i=3+i,
∴z=3+2i,
∴$\overline{z}$=3-2i,
∴i•$\overline z$=2+3i,
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)z=(3+2i)i,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.200輛汽車經(jīng)過(guò)某一雷達(dá)地區(qū),時(shí)速的頻率分布直方圖如圖所示 
(1)求汽車時(shí)速的眾數(shù);
(2)求汽車時(shí)速的中位數(shù);
(3)求汽車時(shí)速的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知關(guān)于x的方程$\frac{1}{2}$x3-3x2+$\frac{9}{2}$x+a=0,且a≥0,求該方程的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=1+sinx-x在區(qū)間[-6,6]上的值域是[n,m],則n+m=( 。
A.0B.1C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某化工廠生產(chǎn)一種溶液,按市場(chǎng)要求雜質(zhì)含量不超過(guò)0.5%,若初時(shí)含雜質(zhì)10%,每過(guò)濾一次可使用雜質(zhì)含量減少$\frac{1}{3}$,至少應(yīng)過(guò)濾8次才能達(dá)到市場(chǎng)要求,其中:lg2=0.3010,lg3=0.4771.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知A={x|2x<1},B={x|y=$\sqrt{x+2}$},則A∩B=(  )
A.[-2,0)B.[-2,0]C.(0,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=-1+2$\sqrt{3}$sinxcosx+2cos2x.
(Ⅰ)求函數(shù)f (x)的最小正周期;
(Ⅱ)求函數(shù)f (x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知tanα=-2,則$\frac{1}{4}$sin2α+$\frac{2}{5}$cos2α=$\frac{7}{25}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案