【題目】某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖如圖所示,規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗.

(I) 求圖中a的值;

(II) 根據(jù)已知條件完成下面22列聯(lián)表,并判斷能否有85%的把握認(rèn)為晉級(jí)成功與性別有關(guān)?

(III) 將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取3人進(jìn)行約談,記這3人中晉級(jí)失敗的人數(shù)為X,求X的分布列與數(shù)學(xué)期望E(X).

晉級(jí)成功

晉級(jí)失敗

合計(jì)

16

50

合計(jì)

參考公式:,其中

【答案】

有超過的把握認(rèn)為晉級(jí)成功與性別有關(guān);

X的分布列為

X

0

1

2

3

數(shù)學(xué)期望,

【解析】

(1)根據(jù)頻率和為1,列方程求出a的值;(2)由頻率分布直方圖計(jì)算晉級(jí)成功的頻率,填寫列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出能有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān);(3)用“晉級(jí)失敗的頻率估計(jì)概率,得,計(jì)算對(duì)應(yīng)的概率,寫出分布列,計(jì)算數(shù)學(xué)期望值。

由頻率分布直方圖各小長(zhǎng)方形面積總和為1,

可知,解得

由頻率分布直方圖知,晉級(jí)成功的頻率為

所以晉級(jí)成功的人數(shù)為,填表如下:

晉級(jí)成功

晉級(jí)失敗

合計(jì)

16

34

50

9

41

50

合計(jì)

25

75

100

假設(shè)晉級(jí)成功與性別無(wú)關(guān),

根據(jù)上表數(shù)據(jù)代入公式可得,

所以有超過的把握認(rèn)為晉級(jí)成功與性別有關(guān);

由頻率分布直方圖知晉級(jí)失敗的頻率為,

將頻率視為概率,則從本次考試的所有人員中,隨機(jī)抽取1人進(jìn)行約談,

這人晉級(jí)失敗的概率為,所以X可視為服從二項(xiàng)分布,即

, ,

,

,

所以X的分布列為

X

0

1

2

3

數(shù)學(xué)期望為, 或

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且,其中為自然對(duì)數(shù)的底數(shù).

(1)求函數(shù)的最大值;

(2)證明 :.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列滿足,則的前20項(xiàng)和為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面五邊形ABCDE中,ABCE,且AE2AEC60°,CDED,cosEDC.將△CDE沿CE折起,使點(diǎn)D移動(dòng)到P的位置,且AP,得到四棱錐PABCE.

(1)求證:AP⊥平面ABCE

(2)記平面PAB與平面PCE相交于直線l,求證:ABl.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】蚌埠市某中學(xué)高三年級(jí)從甲(文)、乙(理)兩個(gè)科組各選出名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是,乙組學(xué)生成績(jī)的中位數(shù)是

1)求的值;

2)計(jì)算甲組位學(xué)生成績(jī)的方差;

3)從成績(jī)?cè)?/span>分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游愛好者計(jì)劃從3個(gè)亞洲國(guó)家A1A2,A33個(gè)歐洲國(guó)家B1B2,B3中選擇2個(gè)國(guó)家去旅游.

(1)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;

(2)若從亞洲國(guó)家和歐洲國(guó)家中各選1個(gè),求這兩個(gè)國(guó)家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線Cρsin2θ2acos θ(a>0),過點(diǎn)P(2,-4)的直線l (t為參數(shù))與曲線C相交于M,N兩點(diǎn).

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、b、cABC的三個(gè)內(nèi)角AB、C的對(duì)邊,向量=-1),=cosA,sinA),若,且acosB+bcosA=csinC,則角B的大小為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

(1)討論極值點(diǎn)的個(gè)數(shù);

(2)設(shè),函數(shù),若,)滿足,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案