10.已知“整數(shù)對”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個“整數(shù)對”是( 。
A.(7,5)B.(5,7)C.(2,10)D.(10,1)

分析 我們按規(guī)律分組:第一組(1,1);第二組(1,2),(2,1);第三組(1,3),(2,2),(3,1);…則前10組共有1+2+3+…+10=55個有序?qū)崝?shù)對.第60項應(yīng)在第11組中,然后分析這些點的分布規(guī)律,然后歸納推斷出,點的排列規(guī)律,再求出第60個數(shù)對.

解答 解:按規(guī)律分組:第一組(1,1);第二組(1,2),(2,1);第三組(1,3),(2,2),(3,1);…則前10組共有1+2+3+…+10=55個有序?qū)崝?shù)對.
第60項應(yīng)在第11組中,即(1,11),(2,10),(3,9),(4,8),(5,7),…,(11,1)中的第5個,因此第60項為(5,7).
故選B.

點評 本題考查的知識點是歸納推理,歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\vec a、\vec b$是互相垂直的兩個單位向量,且$|\vec a+3\vec b|=m|\vec a-\vec b|$,則實數(shù)m的值為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在R上的減函數(shù)y=f(x),若實數(shù)a,b使不等式f(a2-2a)≥f(b2-2b)恒成立,則當(dāng)1≤b≤2時,$\frac{a+b}{a+1}$的取值范圍是( 。
A.[0,3]B.(0,3]C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列推斷中,錯誤的是( 。
A.A∈l,A∈α,B∈α⇒l?α
B.l?α,A∈l⇒A∉α
C.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
D.A,B,C∈α,A,B,C∈β且A,B,C不共線⇒α,β重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.輸入兩個正整數(shù)a和b(>b),求它們的最大公約數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列命題中:
①在△ABC中,若cosA<cosB,則A>B;
②若函數(shù)f(x)的導(dǎo)數(shù)為f'(x),f(x0)為f(x)的極值的充要條件是f'(x0)=0;
③函數(shù)y=|tan(2x+$\frac{π}{3}$)|的最小正周期為$\frac{π}{2}$;
④同一直角坐標(biāo)系中,函數(shù)f(x)=sinx的圖象與函數(shù)f(x)=x的圖象僅有三個公共點.
其中真命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過點(3,-3)引圓(x-1)2+y2=4的切線,則切線方程為x=3或5x+12y+21=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)滿足xf′(x)=(x-1)f(x),且f(1)=1,則f(x)的值域為(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線$x-\sqrt{3}y+5=0$的傾斜角是30°.

查看答案和解析>>

同步練習(xí)冊答案