17.設(shè)集合A={x|3≤x<10},B={x|2<x<7},求A∩B,A∪CRB.

分析 由已知條件先求出CRB,由此利用不等式的性質(zhì)和交集、并集的概念能求出A∩B,A∪CRB.

解答 解:∵集合A={x|3≤x<10},B={x|2<x<7},
∴A∩B={x|3≤x<7},
A∪CRB=A={x|3≤x<10}∪{x|x≤2或x≥7}={x|x≤2或x≥3}.

點(diǎn)評(píng) 本題考查交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意不等式的性質(zhì)和交集、并集、補(bǔ)集的概念的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關(guān)于x的方程f2(x)+(m+1)f(x)+m+4=0(m∈R)有四個(gè)相異的實(shí)數(shù)根,則m的取值范圍是( 。
A.(-4,-e-$\frac{4}{e+1}$)B.(-4,-3)C.(-e-$\frac{4}{e+1}$,-3)D.(-e-$\frac{4}{e+1}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.點(diǎn)P在橢圓3x2+y2=12上,OP傾斜角為60°,AB∥OP,A,B在橢圓上且都在x軸上方,求△ABP面積的最大值及此時(shí)直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.對(duì)任意x∈R,比較x2+x+1與$\frac{3}{4}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)=ax+ka-x(a>0且a≠1)在R上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.不等式x(4-x)≤5的解集是R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的首項(xiàng)a1=1,a2=3,前n項(xiàng)和為Sn且$\frac{{S}_{n+1}-{S}_{n}}{{S}_{n}-{S}_{n-1}}=\frac{{2a}_{n}+1}{{a}_{n}}$,(n≥2,n∈N*)設(shè)b1=1,bn+1=log2(an+1)+bn(n∈N*
(1)設(shè)cn=$\frac{{4}^{\frac{_{n+1}-1}{n+1}}}{{a}_{n}{a}_{n+1}}$,記Gn=$\sum_{k=1}^{n}{c}_{k}$,試比較Gn與1的大小,并說(shuō)明理由;
(2)若數(shù)列{ln}滿(mǎn)足ln=log2(an+1)(n∈N*),在每?jī)蓚(gè)lk與lk+1之間都插入2k-1(k=1,2,3,…,k∈N*)個(gè)2,使得數(shù)列{ln}變成了一個(gè)新的數(shù)列{tp},試問(wèn):是否存在正整數(shù)m,使得數(shù)列{tp}的前m項(xiàng)的和Tm=2015?如果存在,求出m的值:如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA=AB,PA⊥平面ABCD,E,F(xiàn)分別是BC,PB的中點(diǎn).
(1)證明:EF∥平面PCD;
(2)求EF與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示的是一個(gè)圓臺(tái)的側(cè)面展開(kāi)圖,根據(jù)圖中數(shù)據(jù)求這個(gè)圓臺(tái)的表面積和體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案