8.為推行“新課堂”教學(xué)法,某地理老師分別用傳統(tǒng)方法和“新課堂”兩種不同的教學(xué)方法,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
分?jǐn)?shù)[50,59)[60,69)[70,79)[80,89)[90,100)
甲班頻數(shù)56441
乙班頻數(shù)1365
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?
甲班乙班總計(jì)
成績(jī)優(yōu)良
成績(jī)不優(yōu)良
總計(jì)
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$,(n=a+b+c+d)
臨界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635
(2)先從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

分析 (1)利用頻數(shù)與頻率,求解兩個(gè)班的成績(jī),得到2×2列聯(lián)表中的數(shù)據(jù),求出K2的觀測(cè)值,判斷即可.
(2)由表可知在8人中成績(jī)不優(yōu)良的人數(shù)為$\frac{15}{40}×8=3$,則X的可能取值為0,1,2,3,求出概率,得到分布列,然后求解期望即可.

解答 解:(1)

甲班乙班總計(jì)
成績(jī)優(yōu)良91625
成績(jī)不優(yōu)良11415
總計(jì)202040
根據(jù)2×2列聯(lián)表中的數(shù)據(jù),得K2的觀測(cè)值為$k=\frac{{40{{(9×4-16×11)}^2}}}{25×15×20×20}≈5.227>5.024$,
∴能在犯錯(cuò)概率不超過(guò)0.025的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”.
(2)由表可知在8人中成績(jī)不優(yōu)良的人數(shù)為$\frac{15}{40}×8=3$,則X的可能取值為0,1,2,3,$P(X=0)=\frac{{C_{11}^3}}{{C_{15}^3}}=\frac{33}{91}$,$P(X=1)=\frac{{C_{11}^2C_4^1}}{{C_{15}^3}}=\frac{44}{91}$,$P(X=2)=\frac{{C_{11}^1C_4^2}}{{C_{15}^3}}=\frac{66}{455}$,$P(X=0)=\frac{C_4^3}{{C_{15}^3}}=\frac{4}{455}$.
∴X的分布列為:
X0123
P$\frac{33}{91}$$\frac{44}{91}$$\frac{66}{455}$$\frac{4}{455}$
∴$E(X)=0×\frac{33}{99}+1×\frac{44}{99}+2×\frac{66}{455}+3×\frac{4}{455}=\frac{364}{455}$=$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查離散性隨機(jī)變量的分布列以及期望的求法,獨(dú)立檢驗(yàn)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知由不等式$\left\{{\begin{array}{l}{x≥y}\\{y≥0}\\{x+y-4≤0}\end{array}}\right.$所確定的平面區(qū)域?yàn)镸,由不等式x2+y2≤8所確定的平面區(qū)域?yàn)镹,區(qū)域M內(nèi)隨機(jī)抽取一個(gè)點(diǎn),該點(diǎn)同時(shí)落在區(qū)域N內(nèi)的概率是( 。
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{π}{16}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.直線2x+3y-8=0與直線2x+3y+18=0之間的距離為$2\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow a$=(2,-1),$\overrightarrow b$=(x,1)(x∈R).
(1)若$\overrightarrow a,\overrightarrow b$的夾角為銳角,求x的范圍;
(2)當(dāng)3$\overrightarrow a-2\overrightarrow b$=(4,y)時(shí),求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|(x-1)(3-x)<0},B={x|-2≤x≤2},則A∩B=(  )
A.[-2,1)B.(1,2]C.[-2,-1)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.“a=-1”是“直線x+ay=1與直線ax+y=5平行”的(  )條件.
A.充分但不必要B.必要但不充分
C.充分D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,三角形PDC所在的平面與長(zhǎng)方形ABCD所在的平面垂直,
PD=PC=4,AB=6,BC=3.
(1)證明:BC⊥PD
(2)證明:求點(diǎn)C到平面PDA的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}中,其前n項(xiàng)和Sn滿足Sn=3an-2(n∈N*
(1)求證:數(shù)列{an}為等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知$|{{{log}_a}\frac{3}{4}}|<1$,求a的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案