【題目】已知矩形ABCD,AB=1,BC= . 將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中( 。
A.存在某個位置,使得直線AC與直線BD垂直
B.存在某個位置,使得直線AB與直線CD垂直
C.存在某個位置,使得直線AD與直線BC垂直
D.對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直
【答案】B
【解析】解:如圖,AE⊥BD,CF⊥BD,依題意,AB=1,BC= , AE=CF= , BE=EF=FD= ,
A,若存在某個位置,使得直線AC與直線BD垂直,則∵BD⊥AE,∴BD⊥平面AEC,從而BD⊥EC,這與已知矛盾,排除A;
B,若存在某個位置,使得直線AB與直線CD垂直,則CD⊥平面ABC,平面ABC⊥平面BCD
取BC中點M,連接ME,則ME⊥BD,∴∠AEM就是二面角A﹣BD﹣C的平面角,此角顯然存在,即當A在底面上的射影位于BC的中點時,直線AB與直線CD垂直,故B正確;
C,若存在某個位置,使得直線AD與直線BC垂直,則BC⊥平面ACD,從而平面ACD⊥平面BCD,即A在底面BCD上的射影應位于線段CD上,這是不可能的,排除C
D,由上所述,可排除D
故選 B
【考點精析】掌握空間中直線與直線之間的位置關系是解答本題的根本,需要知道相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點.
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)為了解70﹣80歲的老人的日平均睡眠時間(單位:h),隨機選擇了50位老人進行調查,下表是這50位老人睡眠時間的頻率分布表:
序號i | 分組 | 組中值(Gi) | 頻數(shù) | 頻率(Fi) |
1 | [4,5) | 4.5 | 6 | 0.12 |
2 | [5,6) | 5.5 | 10 | 0.20 |
3 | [6,7) | 6.5 | 20 | 0.40 |
4 | [7,8) | 7.5 | 10 | 0.20 |
5 | [8,9] | 8.5 | 4 | 0.08 |
在上述統(tǒng)計數(shù)據(jù)的分析中一部分計算見算法流程圖,則輸出的S的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關曲線”.已知F1、F2是一對相關曲線的焦點,P是它們在第一象限的交點,當∠F1PF2=60°時,這一對相關曲線中雙曲線的離心率是( 。
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設圓弧x2+y2=1(x≥0,y≥0)與兩坐標軸正半軸圍成的扇形區(qū)域為M,過圓弧上中點A做該圓的切線與兩坐標軸正半軸圍成的三角形區(qū)域為N.現(xiàn)隨機在區(qū)域N內投一點B,若設點B落在區(qū)域M內的概率為P,則P的值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,動點P在底面ABCD內,且P到棱AD的距離與到面對角線BC1的距離相等,則點P的軌跡是( 。
A.線段
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓C過點(1,0),且于直線x=﹣1相切.
(1)求圓心C的軌跡M的方程;
(2)A,B是M上的動點,O是坐標原點,且 , 求證:直線AB過定點,并求出該點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com