17.已知命題p:“若a>1,則a2>a”;命題q:“若a>0,則a>$\frac{1}{a}$”,則下列命題為真命題的是( 。
A.?pB.p∧qC.p∧(?q)D.?p)∨q

分析 先判斷命題p,q的真假,進(jìn)而根據(jù)復(fù)合命題真假判斷的真值表,可得答案.

解答 解:命題p:“若a>1,則a2>a”為真命題;
命題q:“若a>0,則a>$\frac{1}{a}$”為假命題,
?p,p∧q,(?p)∨q均為假命題,
p∧(?q)為真命題;
故選:C

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合但,不等式與不等關(guān)系等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.下列說(shuō)法正確的有:(1)(4)
(1)在△ABC中,當(dāng)sinA>sinB時(shí),一定有A>B;
(2)在△ABC中,2cosBsinA=sinC,則△ABC的一定是等腰直角三角形;
(3)在△ABC中,若a=6,b=9,A=45°,則解該三角形有兩解;
(4)函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x的圖象可以由函數(shù)g(x)=4sinxcosx的圖象向右平移$\frac{π}{12}$個(gè)單位得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)據(jù)x1,x2,…,x10的方差為3,那么數(shù)據(jù)2x1+3,2x2+3,…2x10+3的方差為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知F1、F2 是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0):的左、右焦點(diǎn),點(diǎn)Q(-$\sqrt{2}$,1)在橢圓上,線段QF2 與y軸的交點(diǎn)M,且點(diǎn)M為QF2 中點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)P為橢圓C上一點(diǎn),且∠F1PF2=$\frac{π}{2}$,求△F1PF2 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.橢圓$\frac{x^2}{16}+\frac{y^2}{7}$=1的左、右頂點(diǎn)坐標(biāo)為( 。
A.(±4,0)B.(0,±4)C.(±3,0)D.(0,±3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.過(guò)點(diǎn)A(2,0)且與圓x2+4x+y2-32=0內(nèi)切的圓的圓心的軌跡方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在R上定義運(yùn)算?:x?y=(1-x)(1+y)若不等式(x-a)?(x+a)<1對(duì)任意實(shí)數(shù)x成立,則(  )
A.-1<a<1B.-2<a<0C.0<a<2D.-$\frac{3}{2}$<α<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(α)=$\frac{cos(π-α)cos(\frac{3π}{2}+α)}{sin(α-π)}$
(1)化簡(jiǎn)f(α);
(2)若α為第二象限角,且cos(α-$\frac{π}{2}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.拋物線頂點(diǎn)在原點(diǎn),對(duì)稱軸是x軸,點(diǎn)(-5,4)到焦點(diǎn)的距離為5,則拋物線方程為(  )
A.y2=-16xB.y2=-8x或y2=-32xC.y2=-4xD.y2=-4x或y2=-36x

查看答案和解析>>

同步練習(xí)冊(cè)答案