9.在R上定義運(yùn)算?:x?y=(1-x)(1+y)若不等式(x-a)?(x+a)<1對(duì)任意實(shí)數(shù)x成立,則( 。
A.-1<a<1B.-2<a<0C.0<a<2D.-$\frac{3}{2}$<α<$\frac{1}{2}$

分析 由新定義可知(x-a)?(x+a)=(1-(x-a))(1+(x+a))=(1+a)2-x2,從而化不等式為(1+a)2-1<x2對(duì)任意實(shí)數(shù)x成立,從而由恒成立求得.

解答 解:∵x?y=(1-x)(1+y),
∴(x-a)?(x+a)=(1-(x-a))(1+(x+a))=(1+a)2-x2
∴(1+a)2-x2<1對(duì)任意實(shí)數(shù)x成立,
即(1+a)2-1<x2對(duì)任意實(shí)數(shù)x成立,
故(1+a)2-1<0,
解得,-2<a<0,
故選B.

點(diǎn)評(píng) 本題考查了學(xué)生的學(xué)習(xí)能力及恒成立問(wèn)題,考查了轉(zhuǎn)化思想方法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.計(jì)算:sin$\frac{13π}{2}$=1,cos$\frac{19π}{3}$=$\frac{1}{2}$,tan405°=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.給出下列四個(gè)命題:
①“若xy=1,則x,y互為倒數(shù)”的逆命題;
②“相似三角形的周長(zhǎng)相等”的否命題;
③“若b≤-1,則x2-2bx+b2+b=0有實(shí)數(shù)根”的逆否命題;
④若p:x>1,q:x≥4,則p是q的充分條件;
其中真命題的序號(hào)是①③.(請(qǐng)把所有真命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知命題p:“若a>1,則a2>a”;命題q:“若a>0,則a>$\frac{1}{a}$”,則下列命題為真命題的是( 。
A.?pB.p∧qC.p∧(?q)D.?p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x}-1,(x>0)}\\{-{x}^{3}+1,(x≤0)}\end{array}\right.$,
(I)求函數(shù)f(x)的最小值;
(II)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意的x∈R恒成立;命題q:指數(shù)函數(shù)y=(m2-1)x是增函數(shù),若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.容量為100的樣本數(shù)據(jù)被分為6組,如表
組號(hào)123456
頻數(shù)1417x201615
第3組的頻率是(  )
A.0.15B.0.16C.0.18D.0.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知f(x)=2sinωx(ω>0)在[-$\frac{π}{3},\frac{π}{4}$]上有最小值-2,則ω的取值范圍為( 。
A.(0,$\frac{2}{3}$]B.(0,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.一直線過(guò)點(diǎn)P(2,0),且點(diǎn)Q(-2$,\frac{{4\sqrt{3}}}{3}$)到該直線距離等于4,求該直線傾斜角及直線的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.等差數(shù)列{an}和等比數(shù)列{bn}的首項(xiàng)為相等的正數(shù),若a2n+1=b2n+1,則an+1與bn+1的關(guān)系為( 。
A.an+1≥bn+1B.an+1>bn+1C.an+1<bn+1D.an+1≤bn+1

查看答案和解析>>

同步練習(xí)冊(cè)答案