分析 利用正弦定理以及基本不等式求解表達(dá)式的最值即可.
解答 解:由正弦定理得:sinAcos2$\frac{C}{2}$+sinCcos2$\frac{A}{2}$=$\frac{3}{2}$sinB,
即sinA•$\frac{1+cosC}{2}$+sinC•$\frac{1+cosA}{2}$=$\frac{3}{2}$sinB,
∴sinA+sinC+sinAcosC+cosAsinC=3sinB,即sinA+sinC+sin(A+C)=3sinB,
∵sin(A+C)=sinB,
∴sinA+sinC=2sinB,a+c=2b,由余弦定理得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-\frac{1}{4}({a+c)}^{2}}{2ac}$=$\frac{3}{8}$•$\frac{{a}^{2}+{c}^{2}}{ac}$-$\frac{1}{4}$≥$\frac{3}{4}$-$\frac{1}{4}$=$\frac{1}{2}$,
則B≤$\frac{π}{3}$.
sinA•sinC≤$({\frac{sinA+sinC}{2})}^{2}$=sin2B≤$\frac{3}{4}$.當(dāng)且僅當(dāng)三角形是正三角形時(shí),取得最大值.
sinA•sinC的最大值為$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.
點(diǎn)評(píng) 本題考查基本不等式的應(yīng)用,正弦定理的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 12 | C. | 14 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 外心 | B. | 內(nèi)心 | C. | 重心 | D. | 垂心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{e}$) | B. | (0,1) | C. | (1,+∞) | D. | (e,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com