已知函數(shù)f(x)=ex-mx+1的圖象上存在與直線y=3x垂直的切線,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),結(jié)合函數(shù)f(x)=ex-mx+1的圖象上存在與直線y=3x垂直的切線得到存在實(shí)數(shù)x使得m=ex+
1
3
成立,由此求得m的范圍.
解答: 解:由f(x)=ex-mx+1,得
f′(x)=ex-m,
∵直線y=3x的斜率為3,
函數(shù)f(x)=ex-mx+1的圖象上存在與直線y=3x垂直的切線,
則存在實(shí)數(shù)x,使得ex-m=-
1
3
成立,
即存在實(shí)數(shù)x使得m=ex+
1
3
成立,
∵ex>0,
∴m
1
3

故答案為:m
1
3
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線3x+4y+7=0和直線x-2y-1=0的交點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
sinα-2
cosα-2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos
3x
4
.sin
3x
4
),
b
=(cos(
x
4
+
π
3
),-sin(
x
4
+
π
3
))
;令f(x)=
a
b

(1)求f(x)的解析式;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)若x∈[-
π
6
6
]
,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)為A(2,4),B(1,-2),C(-2,3).
(1)求邊AB上的高CD所在直線的方程;
(2)求經(jīng)過(guò)C的直線l,使得A,B到直線l的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)幾何體的三視圖是三個(gè)直角三角形,則該幾何體的體積為( 。
A、
1
2
B、
1
6
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=i(1-i)(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)i3(1+i)=( 。
A、1-iB、1+i
C、i-1D、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿(mǎn)足:a1=1,a7=a6+2a5,若aman=16,則
1
m
+
4
n
的最小值為( 。
A、
3
2
B、
5
3
C、
25
6
D、不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案