14.已知條件p:x2>4;條件q:x≤2,?p是q的(  )
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.即不充分又不必要條件

分析 條件p:x2>4,解得x>2,或x<-2,可得¬p:-2≤x≤2,即可判斷出結(jié)論.

解答 解:條件p:x2>4,解得x>2,或x<-2,∴¬p:-2≤x≤2;
條件q:x≤2,¬p是q的充分不必要條件.
故選:A.

點評 本題考查了不等式的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知p:2x2-9x+a<0,q:$\left\{\begin{array}{l}{{x}^{2}-7x+10<0}\\{-{x}^{2}+x+6>0}\end{array}\right.$且非q是非p的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.關(guān)于簡單隨機抽樣,有下列說法:
①它要求被抽取樣本的總體的個數(shù)有限;
②它是從總體中逐個地進行抽;
③它是一種不放回抽樣;
④它是一種等可能抽樣,每次從總體中抽取一個個體時,不僅各個個體被抽取的可能性相等,而且在整個抽樣過程中,各個個體被抽取的可能性也相等,從而保證了這種抽樣方法的公平性.
其中正確的有①②③④(請把你認(rèn)為正確的所有序號都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知F是拋物線C:y2=2px(p>0)的焦點,⊙M過坐標(biāo)原點和F點,且圓心M到拋物線C的準(zhǔn)線距離為$\frac{3}{2}$
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知拋物線C上的點N(s,4),過N作拋物線C的兩條互相垂直的弦NA和NB,判斷直線AB是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知A為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的一個動點,弦AB,AC分別過左右焦點F1,F(xiàn)2,且當(dāng)線段AF1的中點在y軸上時,cos∠F1AF2=$\frac{1}{3}$.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)$\overrightarrow{A{F_1}}={λ_1}\overrightarrow{{F_1}B},\overrightarrow{A{F_2}}={λ_2}\overrightarrow{{F_2}C}$,試判斷λ12是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.$\frac{(1+i)^{3}}{(1-i)^{2}}$=-1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知關(guān)于x的方程:x2-(8+i)x+16+ai=0(a∈R)有實數(shù)根b,求實數(shù)a,b的值.
(2)若復(fù)數(shù)z=$\frac{5}{1-2i}$+m•$\frac{1-i}{1+i}$(i為虛數(shù)單位)為實數(shù),則實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=3cosx-sinx在點x0=$\frac{π}{3}$處的導(dǎo)數(shù)等于-$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.根據(jù)圖象寫出符合下列條件的x的集合.
(1)|cosx|>|sinx|;
(2)|sinx|+cosx>1.

查看答案和解析>>

同步練習(xí)冊答案