【題目】已知棱長為的正方體中,分別為棱的中點.

1)證明:平面

2)求點到平面的距離.

【答案】1)證明見解析;(2

【解析】

1)證法一:連結于點,利用平幾知識證四邊形為平行四邊形,再根據(jù)線面平行判定定理得結果;證法二:取中點,利用平幾知識證,再根據(jù)線面平行判定定理得結果;

2))解法一與解法二,利用等體積法求點到直線距離.

1)證法一:如圖連結于點,則點的中點,連結,

的中點,∴的中位線,∴,

的中點,∴,∴四邊形為平行四邊形

,∵平面,平面

∥平面.

證法二:如圖取中點,連接,,因為正方體,

分別為中點,所以可得四邊形和四邊形均為平行四邊

形,所以,所以平面即為平行四邊形所在平面,因為

的中點,所以也為中點,且中點,所以,∴∥平面.

2)解法一:延長到點,使得,連結,則∥平面

到平面的距離即到平面的距離,,點到平面的距

離為,

到平面的距離為,則,即

可得,即點到平面的距離為

解法二:由證法二知點到平面的距離為到平面的距離,所以,

,所以到平面的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學高二年級組織外出參加學業(yè)水平考試,出行方式為:乘坐學校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當的學生選擇自行打車,自行打車的平均時間為 (單位:分鐘) ,而乘坐定制公交的平均時間不受影響,恒為40分鐘,試根據(jù)上述分析結果回答下列問題:

(1)當在什么范圍內時,乘坐定制公交的平均時間少于自行打車的平均時間?

(2)求該校學生參加考試平均時間的表達式:討論的單調性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,點是線段上的動點,以下結論:

平面;

;

③三棱錐,體積不變;

中點時,直線與平面所成角最大.

其中正確的序號為( )

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線方程為,求的值;

2)求函數(shù)的極值點;

3)設,若當時,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線與拋物線交于M,拋物線C的焦點為F,且.

(Ⅰ)求拋物線C的方程;

(Ⅱ)設點Q是拋物線C上的動點,點D,Ey軸上,圓內切于三角形,求三角形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點坐標為,過垂直于長軸的直線交橢圓于兩點,且.

1)求橢圓的方程;

2)過的直線與橢圓交于不同的兩點、,則的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是一直角梯形,,,底面.

1)在線段上是否存在一點F,使得平面,若存在,求出的值;若不存在,試說明理由;

2)在(1)的條件下,若所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)設的極值點,求,并求的單調區(qū)間;

2)當時,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《周髀算經》是中國古代重要的數(shù)學著作,其記載的日月歷法曰:陰陽之數(shù),日月之法,十九歲為一章,四章為一部,部七十六歲,二十部為一遂,遂千百五二十歲,.生數(shù)皆終,萬物復蘇,天以更元作紀歷,某老年公寓住有20位老人,他們的年齡(都為正整數(shù))之和恰好為一遂,其中年長者已是奔百之齡(年齡介于90100),其余19人的年齡依次相差一歲,則年長者的年齡為( )

A.94B.95C.96D.98

查看答案和解析>>

同步練習冊答案