【題目】某芯片公司為制定下一年的研發(fā)投入計劃,需了解年研發(fā)資金投入量(單位:億元)對年銷售額(單位:億元)的影響.該公司對歷史數(shù)據(jù)進(jìn)行對比分析,建立了兩個函數(shù)模型:①,②,其中均為常數(shù),為自然對數(shù)的底數(shù).

現(xiàn)該公司收集了近12年的年研發(fā)資金投入量和年銷售額的數(shù)據(jù),,并對這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點圖及一些統(tǒng)計量的值.令,經(jīng)計算得如下數(shù)據(jù):

(1)設(shè)的相關(guān)系數(shù)為的相關(guān)系數(shù)為,請從相關(guān)系數(shù)的角度,選擇一個擬合程度更好的模型;

(2)(i)根據(jù)(1的選擇及表中數(shù)據(jù),建立關(guān)于的回歸方程(系數(shù)精確到0.01);

(ii)若下一年銷售額需達(dá)到90億元,預(yù)測下一年的研發(fā)資金投入量是多少億元?

附:①相關(guān)系數(shù),回歸直線中斜率和截距的最小二乘估計公式分別為:,;

② 參考數(shù)據(jù):,

【答案】(1)模型的擬合程度更好;(2)(i);(ii)億元.

【解析】

1)由相關(guān)系數(shù)求出兩個系數(shù),比較大小可得;

2)(i)先建立關(guān)于的線性回歸方程,從而得出關(guān)于的回歸方程;

(ii)把代入(i)中的回歸方程可得值.

本小題主要考查回歸分析等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運(yùn)算求解能力、抽象概括能力及應(yīng)用意識,考查統(tǒng)計與概率思想、分類與整合思想,考查數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性.

解:(1),

,

,因此從相關(guān)系數(shù)的角度,模型的擬合程度更好

(2)(i)先建立關(guān)于的線性回歸方程.

,得,即

由于,

所以關(guān)于的線性回歸方程為,

所以,則

(ii)下一年銷售額需達(dá)到90億元,即

代入得,,

,所以

所以,

所以預(yù)測下一年的研發(fā)資金投入量約是億元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,底面為直角梯形,,,為線段上一點.

I)若,求證:平面;

II)若,,異面直線角,二面角的余弦值為,求的長及直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知六個直角邊均為1的直角三角形圍成的兩個正六邊形,則該圖形繞著旋轉(zhuǎn)一周得到的幾何體的體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù)).

1)若函數(shù)存在極值點,求的取值范圍;

2)設(shè),若不等式上恒成立,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在上的函數(shù),.

1)求函數(shù)的單調(diào)區(qū)間;

2)若、、滿足,則稱更接近.當(dāng),試比較哪個更接近,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),若有兩個相異零點,,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)檢部門為了解某企業(yè)生產(chǎn)的一-種圓柱形零件的質(zhì)量情況,隨機(jī)抽檢了100個零件,得到這些零件的橫截面直徑d(單位:)的頻率分布表如下:

d的分組

零件數(shù)

12

38

38

10

2

1)試估計這個企業(yè)生產(chǎn)的這類零件的橫截面直徑不低于的概率;

2)求這個企業(yè)生產(chǎn)的這類零件的橫截面直徑的平均數(shù)與標(biāo)準(zhǔn)差的估計值(同一組中的數(shù)據(jù)用該區(qū)間的中點值為代表).(精確到0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某手機(jī)商城2018年華為、蘋果、三星三種品牌的手機(jī)各季度銷量的百分比堆積圖(如:第三季度華為銷量約占50%,蘋果銷量約占20%,三星銷量約占30%).根據(jù)該圖,以下結(jié)論中一定正確的是( 。

A.華為的全年銷量最大B.蘋果第二季度的銷量大于第三季度的銷量

C.華為銷量最大的是第四季度D.三星銷量最小的是第四季度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為且右焦點到右準(zhǔn)線的距離為.

1)求橢圓的標(biāo)準(zhǔn)方程:

2)過點的直線與橢圓交于兩點,與交于點是弦的中點,直線交于點.的面積之比是,求的長度.

查看答案和解析>>

同步練習(xí)冊答案