【題目】已知指數函數y=g(x)滿足:g(3)=8,定義域為R的函數f(x)= 是奇函數.
(1)確定y=f(x)和y=g(x)的解析式;
(2)若對任意的x∈[1,4],不等式f(2x﹣3)+f(x﹣k)>0恒成立,求k的取值范圍.
【答案】
(1)解:設g(x)=ax(a>0且a≠1),
∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.∴f(x)= ,
∵函數f(x)是定義域為R的奇函數,∴f(0)=0,∴n=1,∴f(x)= ,(x∈R)
(2)解:由(Ⅰ)知f(x)= ,易知f(x)在R上為減函數,
又f(x)是奇函數,∴f(2x﹣3)+f(x﹣k)>0,∴f(2x﹣3)>﹣f(x﹣k)=f(k﹣x),
∵f(x)在R上為減函數,由上式得2x﹣3<k﹣x,
即對一切x∈(1,4),有3x﹣3<k恒成立,
令m(x)=3x﹣3,x∈(1,4),
易知m(x)在(1,4)上遞增,∴m(x)<3×4﹣3=9,
∴k≥9,即實數k的取值范圍是[9,+∞)
【解析】(1)設g(x)=ax(a>0且a≠1),由a3=8解得a=2.故g(x)=2x . 再根據函數是奇函數,求出n的值,得到f(x)的解析式;(2)根據函數為奇函數和減函數,轉化為即對一切x∈(1,4),有3tx﹣3<k恒成立,再利用函數的單調性求出函數的最值即可.
【考點精析】本題主要考查了函數奇偶性的性質的相關知識點,需要掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】設關于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數
(1)證明f(x)在區(qū)間(α,β)上是增函數;
(2)當a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga ,g(x)=1+loga(x﹣1),(a>0且a≠1),設f(x)和g(x)的定義域的公共部分為D,
(1)求集合D;
(2)當a>1時.若不等式g(x﹣ )﹣f(2x)>2在D內恒成立,求a的取值范圍;
(3)是否存在實數a,當[m,n]D時,f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求實數a的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學將100名髙一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”
| 0.05 | 0.01 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(I)從乙班隨機抽取2名學生的成績,記“成績優(yōu)秀”的個數為,求的分布列和數學期望;
(II)根據頻率分布直方圖填寫下面2 x2列聯表,并判斷是否有95%的把握認為:“成績優(yōu)秀”與教學方式有關.
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上的偶函數,對任意x∈R,都有f(x﹣2)=f(x+2)且當x∈[﹣2,0]時,f(x)=( )x﹣1,若在區(qū)間(﹣2,6]內關于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個不同的實數根,則a的取值范圍是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知常數,在矩形ABCD中, , ,O為AB的中點,點E、F、G分別在BC、CD、DA上移動,且,P為GE與OF的交點(如圖),問是否存在兩個定點,使P到這兩點的距離的和為定值?若存在,求出這兩點的坐標及此定值;若不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com