如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是線段AE上的動點.
(Ⅰ)試確定點M的位置,使AC平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.
(Ⅰ)當M是線段AE的中點時,AC平面DMF.
證明如下:
連結(jié)CE,交DF于N,連結(jié)MN,
由于M、N分別是AE、CE的中點,所以MNAC,
由于MN?平面DMF,又AC不包含于平面DMF,
∴AC平面DMF.(4分)
(Ⅱ)方法一:過點D作平面DMF與平面ABCD的交線l,
∵AC平面DMF,∴ACl,
過點M作MG⊥AD于G,
∵平面ABCD⊥平面CDEF,DE⊥CD,
∴DE⊥平面ABCD,∴平面ADE⊥平面ABCD,
∴MG⊥平面ABCD,
過G作GH⊥l于H,連結(jié)MH,則直線l⊥平面MGH,∴l(xiāng)⊥MH,
∴∠MHG是平面MDF與平面ABCD所成銳二面角的平面角.(8分)
設(shè)AB=2,則DG=1,GH=DGsin∠GDH=DGsin∠DAC=1×
2
5
=
2
5
MG=
1
2
DE=1
,則MH=
(
2
5
)
2
+12
=
3
5
,(11分)
cos∠MHG=
GH
MH
=
2
5
÷
3
5
=
2
3
,
∴所求二面角的余弦值為
2
3
.(12分)
方法二:∵平面ABCD⊥平面CDEF,DE⊥CD,
∴DE⊥平面ABCD,可知AD,CD,DE兩兩垂直,
分別以
DA
,
DC
,
DE
的方向為x,y,z軸,
建立空間直角坐標系O-xyz.
設(shè)AB=2,則M(1,0,1),F(xiàn)(0,4,2),
DM
=(1,0,1)
DF
=(0,4,2)
,
設(shè)平面MDF的法向量n1=(x,y,z),
n1
DM
=0
n1
DF
=0
,∴
x+z=0
4y+2z=0
,
令y=1,得平面MDF的一個法向量
n
=(2,1,-2),(8分)
取平面ABCD的法向量
m
=(0,0,1),(9分)
由cos<
n
,
m
>=
-2
4+1+4
×1
=-
2
3
,(11分)
∴平面MDF與平面ABCD所成銳二面角的余弦值為
2
3
.(12分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖幾何體中,四邊形ABCD為矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2,  EF∥AB,G為FC的中點,M為線段CD上的一點,且CM =2.
(1)證明:平面BGM⊥平面BFC;
(2)求三棱錐F-BMC的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,平面,,,依次是的中點.

(1)求證:
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,正方體ABCD-A1B1C1D1中,A1C與截面DBC1交于O點,AC,BD交于M點,求證:C1,O,M三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點.
(Ⅰ)求證:AF平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正弦值;
(Ⅲ)求二面角P-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三棱柱ABC-A1B1C1的底面為直角三角形,則棱與底面垂直,如圖所示,D是棱CC1的中點,且∠ACB=90°,BC=1,AC=
3
,AA1=
6

(Ⅰ)證明:A1D⊥平面AB1C1;
(Ⅱ)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知二面角α-AB-β為120°,AC?α,BD?β,且AC⊥AB,BD⊥AB,AB=AC=BD=a,則CD的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BECF,CE⊥EF,AD=
3
,EF=2.
(1)求異面直線AD與EF所成的角;
(2)當AB的長為何值時,二面角A-EF-C的大小為45°?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

邊長為4的正四面體P-ABC中,E為PA的中點,則平面EBC與平面ABC所成銳二面角的余弦值為______.

查看答案和解析>>

同步練習冊答案