18.函數(shù)f(x)=lg(4-x2)的定義域為(  )
A.(-∞,-2)∪(2,+∞)B.(-2,2)C.[-2,2]D.(-∞,-2)∪[2,+∞)

分析 由對數(shù)式的真數(shù)大于0,然后求解一元二次不等式得答案.

解答 解:由4-x2>0,得x2<4,即-2<x<2.
∴函數(shù)f(x)=lg(4-x2)的定義域為(-2,2).
故選:B.

點評 本題考查函數(shù)的定義域及其求法,考查了一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C上每一點到點F(2,0)的距離與到直線x=-2的距離相等
(Ⅰ)求曲線C的方程
(Ⅱ)直線過點p(a,0)a>0,且與曲線C有兩個焦點A,B,O為坐標(biāo)原點,求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在空間直角坐標(biāo)系中,點P(2,-2,3)與點Q(-3,2,1)的距離為3$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知圓錐的母線長為20cm,則當(dāng)其體積最大時,其側(cè)面積為( 。
A.$\frac{800\sqrt{6}π}{3}$cm2B.$\frac{400\sqrt{6}π}{3}$cm2C.$\frac{100\sqrt{6}π}{3}$cm2D.$\frac{200\sqrt{6}π}{3}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=(-1,3),則|$\overrightarrow{a}$|的值是( 。
A.$\sqrt{10}$B.10C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(sinα+cosα)=$\frac{1}{2}$sin2α(α∈R),則f(sin$\frac{π}{3}$)的值是( 。
A.$\frac{\sqrt{3}}{8}$B.$\frac{1}{8}$C.-$\frac{1}{8}$D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了研究“數(shù)學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(xué)(勤奮程度和自覺性都一樣).以下為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
甲班:87、83、90、70、66、71、82、72、67、57、67、72、57、58、68、74、87、78、69、58
乙班:71、80、81、82、90、65、57、73、85、86、91、95、86、67、68、75、96、88、89、69
(Ⅰ)作出甲、乙兩班學(xué)生成績莖葉圖;并求甲班數(shù)學(xué)成績的中位數(shù)和乙班學(xué)生數(shù)學(xué)成績的眾數(shù);
(Ⅱ)學(xué)校規(guī)定:成績不低于80分的為優(yōu)秀,請寫出下面的2×2聯(lián)列表,并判斷有多大把握認(rèn)為“成績游戲與教學(xué)方式有關(guān)”.
甲班乙班合計
優(yōu)秀
不優(yōu)秀
合計
下面臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)對實數(shù)x∈R滿足f(x)+f(-x)=0,f(x-1)=f(x+1),若當(dāng)x∈[0,1)時,f(x)=ax+b(a>0,a≠1),f($\frac{3}{2}$)=1-$\sqrt{2}$.
(1)求x∈[-1,1]時,f(x)的解析式;
(2)求方程f(x)-|log4x|=0的實數(shù)解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“ab=0”是“a2+b2=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案