10.為了研究“數(shù)學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
甲班:87、83、90、70、66、71、82、72、67、57、67、72、57、58、68、74、87、78、69、58
乙班:71、80、81、82、90、65、57、73、85、86、91、95、86、67、68、75、96、88、89、69
(Ⅰ)作出甲、乙兩班學(xué)生成績(jī)莖葉圖;并求甲班數(shù)學(xué)成績(jī)的中位數(shù)和乙班學(xué)生數(shù)學(xué)成績(jī)的眾數(shù);
(Ⅱ)學(xué)校規(guī)定:成績(jī)不低于80分的為優(yōu)秀,請(qǐng)寫出下面的2×2聯(lián)列表,并判斷有多大把握認(rèn)為“成績(jī)游戲與教學(xué)方式有關(guān)”.
甲班乙班合計(jì)
優(yōu)秀
不優(yōu)秀
合計(jì)
下面臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$)

分析 (Ⅰ)根據(jù)所給數(shù)據(jù),作出甲、乙兩班學(xué)生成績(jī)莖葉圖,從而求出甲班數(shù)學(xué)成績(jī)的中位數(shù)和乙班學(xué)生數(shù)學(xué)成績(jī)的眾數(shù);
(Ⅱ)根據(jù)莖葉圖分別求出甲、乙班優(yōu)秀的人數(shù)與不優(yōu)秀的人數(shù),列出列聯(lián)表,利用相關(guān)指數(shù)公式計(jì)算K2的觀測(cè)值,比較與臨界值的大小,判斷成績(jī)優(yōu)秀與教學(xué)方式有關(guān)的可靠性程度.

解答 解:(Ⅰ)甲、乙兩班學(xué)生成績(jī)莖葉圖如圖所示:
甲班數(shù)學(xué)成績(jī)的中位數(shù)$\frac{70+71}{2}$=70.5;
乙班學(xué)生數(shù)學(xué)成績(jī)的眾數(shù)86
(Ⅱ)2×2列聯(lián)表為:

甲班乙班合計(jì)
優(yōu)秀61420
不優(yōu)秀14620
合計(jì)202040
∴K2=$\frac{40×(6×6-14×14)^{2}}{20×20×20×20}$=6.4>5.024,
有97.5%以上的把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān).

點(diǎn)評(píng) 本題考查了莖葉圖,考查列聯(lián)表、根據(jù)列聯(lián)表計(jì)算相關(guān)指數(shù)K2的觀測(cè)值,由公式計(jì)算相關(guān)指數(shù)K2的觀測(cè)值并由觀測(cè)值判斷成績(jī)優(yōu)秀與教學(xué)方式有關(guān)的可靠性程度是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.有一名同學(xué)家開了小賣部,他為了研究氣溫對(duì)某種飲料銷售的影響,記錄了2015年7月至12月每月15號(hào)的下午14時(shí)的氣溫和當(dāng)天賣出的飲料杯數(shù),得到如下資料:
日期7月15日8月15日9月15日10月15日11月15日12月15日
攝氏溫度x(℃)36353024188
飲料杯數(shù)y27292418155
改同學(xué)確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選中的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)誤差不超過3杯,則認(rèn)為得到的線性回歸方程是理想的,請(qǐng)問(2)所得到的線性回歸方程是否理想.
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線y=bx+a的斜率和截距的最小二乘估計(jì)分別為$\widehat$=$\frac{\sum_{i=1}^{n})({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列四個(gè)命題:
①垂直于同一條直線的兩條直線平行;
②平行于同一直線的兩條直線平行;
③既不平行也不相交的兩條直線是異面直線;
④不同在任一平面內(nèi)的兩條直線是異面直線.
其中正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=lg(4-x2)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-2)∪(2,+∞)B.(-2,2)C.[-2,2]D.(-∞,-2)∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.全集U=R,若集合A={x|2≤x<9},B={x|1<x≤6}.
(1)求(CRA)∪B;
(2)若集合C={x|a<x≤2a+7},且A⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當(dāng)x=( 。⿻r(shí),復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i(x∈R)是純虛數(shù).
A.1B.1或-2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=sin(x+\frac{π}{6})cos(x+\frac{π}{6})$,給出下列結(jié)論正確的是(  )
A.f(x)的最小正周期是2πB.$f(x)的一條對(duì)稱軸是x=\frac{π}{6}$
C.$f(x)的一個(gè)對(duì)稱中心是(\frac{π}{6},0)$D.$f(x-\frac{π}{6})是奇函數(shù)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2,θ∈[0,2π]].
(Ⅰ)若函數(shù)f(x)為偶函數(shù),求tanθ的值;
(Ⅱ)若f(x)在[-$\sqrt{3}$,1]上是單調(diào)函數(shù),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求方程x2+ax+9=0有實(shí)根的充要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案