已知圓C:x2+y2+2x-4y+3=0,若圓C的切線在x軸、y軸上的截距相等,求切線的方程.

切線方程為或x+y+1=0或x+y-3=0.

解析試題分析:切線在x軸、y軸上的截距相等,可設切線方程為或x+y=a,又根據(jù)切線的性質(zhì)知圓心(-1,2)到切線的距離等于半徑,由點到直線的距離公式可得的值.本題中容易遺漏切線為的形式,此時在兩坐標軸的距離也相等為
解: 由方程x2+y2+2x-4y+3=0知圓心為(-1,2),半徑為,
當切線過原點時,設切線方程為,則,
,即切線方程為
當切線不過原點時,設切線方程為x+y=a,

∴a=-1或a=3,即切線方程為x+y+1=0或x+y-3=0.
∴切線方程為或x+y+1=0或x+y-3=0.
考點:1.圓的切線的性質(zhì);2.點到直線的距離公式;3.直線的截距式方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知一個圓經(jīng)過直線l:與圓C:的兩個交點,并且面積有最小值,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.求證:

(1)圓心O在直線AD上;
(2)點C是線段GD的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C經(jīng)過點A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)過點(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點,求四邊形PMQN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動圓()
(1)當時,求經(jīng)過原點且與圓相切的直線的方程;
(2)若圓恰在圓的內(nèi)部,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點,動點P 滿足:|PA|=2|PB|.
(1)若點P的軌跡為曲線,求此曲線的方程;
(2)若點Q在直線l1: x+y+3=0上,直線l2經(jīng)過點Q且與曲線只有一個公共點M,求|QM|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的方程為:為常數(shù)).
(1)判斷曲線的形狀;
(2)設曲線分別與軸、軸交于點、、不同于原點),試判斷的面積是否為定值?并證明你的判斷;
(3)設直線與曲線交于不同的兩點,且,求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓:,過定點作斜率為1的直線交圓、兩點,為線段的中點.
(1)求的值;
(2)設為圓上異于、的一點,求△面積的最大值;
(3)從圓外一點向圓引一條切線,切點為,且有 , 求的最小值,并求取最小值時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知點P(2,1)在圓C:上,點P關(guān)于直線的對稱點也在圓C上,則圓C的半徑為      

查看答案和解析>>

同步練習冊答案