分析 首先對向量$\overrightarrow{AD}$利用三角形對應邊$\overrightarrow{AB},\overrightarrow{AC}$表示,然后根據(jù)向量相等得到對應系數(shù).
解答 解:由題意,$\overrightarrow{AD}$=$\overrightarrow{AB}+\overrightarrow{BD}$=$\overrightarrow{AB}+4\overrightarrow{CD}$=$\overrightarrow{AB}+4(\overrightarrow{AD}-\overrightarrow{AC})$
,所以$3\overrightarrow{AD}=-\overrightarrow{AB}+4\overrightarrow{AC}$,
所以$\overrightarrow{AD}=-\frac{1}{3}\overrightarrow{AB}+\frac{4}{3}\overrightarrow{AC}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,
所以$m=-\frac{1}{3},n=\frac{4}{3}$;
故答案為:$m=-\frac{1}{3},n=\frac{4}{3}$.
點評 本題考查了向量的三角形法則以及向量相等的充要條件;屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=$\root{3}{{x}^{3}}$ | C. | f(x)=($\sqrt{x}$)2 | D. | f(x)=$\frac{{x}^{2}}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若x2≥1,則x≥1或x≤-1;假命題 | B. | 若-1<x<1,則x2<1;假命題 | ||
C. | 若x>1或x<-1,則x2>1;真命題 | D. | 若x≥1或x≤-1,則x2≥1;真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com