【題目】已知直線與拋物線相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長為6.
(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ) 設(shè)斜率為的直線交曲線于兩點(diǎn),當(dāng),且位于直線的兩側(cè)時(shí),證明: .
【答案】(Ⅰ) ();(Ⅱ)見解析.
【解析】試題分析:(Ⅰ先由判別式為零可得 的值,再根據(jù)三角形周長可得進(jìn)而由橢圓定義可得方程;(Ⅱ)設(shè)直線方程,聯(lián)立 得,根據(jù)直線斜率公式及韋達(dá)定理利用分析法證明即可.
試題解析:(Ⅰ) 因?yàn)橹本與拋物線相切,所以方程有等根,
則,即,所以.
又因?yàn)閯?dòng)點(diǎn)與定點(diǎn)所構(gòu)成的三角形周長為6,且,
所以
根據(jù)橢圓的定義,動(dòng)點(diǎn)在以為焦點(diǎn)的橢圓上,且不在軸上,
所以,得,則,
即曲線的方程為().
(Ⅱ)設(shè)直線方程 ,聯(lián)立 得,
△=-3+12>0,所以, 此時(shí)直線與曲線有兩個(gè)交點(diǎn), ,
設(shè) , ,則,
∵,不妨取,
要證明恒成立,即證明,
即證,也就是要證
即證由韋達(dá)定理所得結(jié)論可得此式子顯然成立,
所以成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線是過點(diǎn),傾斜角為的直線,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的普通方程和曲線的一個(gè)參數(shù)方程;
(2)曲線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求函數(shù)的零點(diǎn)個(gè)數(shù);
(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.若直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,將曲線上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于兩點(diǎn),點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線上,且到拋物線的焦點(diǎn)的距離等于2.
求拋物線的方程;
若直線與拋物線相交于兩點(diǎn),且為坐標(biāo)原點(diǎn)),求證直線恒過軸上的某定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)+2x>0的解集為(1,3).
(1)若方程f(x)+6a=0有兩個(gè)相等的實(shí)根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD、ADEF為正方形,G,H是DF,F(xiàn)C的中點(diǎn).
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com