分析 由題意算出PA2+PC2=AC2,結(jié)合勾股定理的逆定理得AP⊥PC.由PB⊥平面PAC證出PB⊥PA,PA⊥PC,可得PA、PB、PC兩兩互相垂直.因此以PA、PB、PC為長、寬、高作長方體,該長方體的外接球就是四面體P-ABC的外接球,根據(jù)長方體對角線公式算出外接球的直徑,從而可得所求外接球的表面積.
解答 解:∵PA=4,PC=2,AC=2$\sqrt{5}$,
∴Rt△PAC中,PA2+PC2=20=AC2,可得AP⊥PC
又∵PB⊥平面PAC,PA、PC?平面PAC
∴PB⊥PA,PA⊥PC
以PA、PB、PC為長、寬、高,作長方體如圖所示
則該長方體的外接球就是四面體P-ABC的外接球
∵長方體的對角線長為$\sqrt{{4}^{2}+{4}^{2}+{2}^{2}}$=6
∴長方體外接球的直徑2R=6,得R=3
因此,四面體P-ABC的外接球體積為V=4π•32=36π
故答案為:36π.
點(diǎn)評 本題給出三棱錐P-ABC滿足的條件,求它的外接球表面積.著重考查了勾股定理、長方體的對角線公式和球的表面積計(jì)算等知識,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相交 | C. | 相切 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12π | B. | 16π | C. | 18π | D. | $\frac{27π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com