分析 (1)利用導(dǎo)數(shù)與斜率之間的關(guān)系,知f'(1)=-1求出b值,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間即可;
(2)分類討論b的取值范圍,從而判斷f(x)的在[1,3]上的單調(diào)性,利用單調(diào)性求函數(shù)最值;
解答 解:(1)f'(x)=$\frac{1}{x}$-$\frac{x-(x-b)}{{x}^{2}}$=$\frac{x-b}{{x}^{2}}$ (x>0)
因?yàn)榍y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y+1=0垂直,
所以f'(1)=-1,即1-b=-1,解得b=2;
令f'(x)=$\frac{x-2}{{x}^{2}}$<0,結(jié)合x(chóng)>0得0<x<2.
所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,2).
(2)由f'(x)=$\frac{x-b}{{x}^{2}}$(x>0)可知,當(dāng)0<b≤1時(shí),f'(x)>0在[1,3]上恒成立,
此時(shí)f(x)在[1,3]上為增函數(shù).∴f(x)min=f(1)=b-1.
令b-1=$\frac{1}{3}$,解得b=$\frac{4}{3}$,∵$\frac{4}{3}$>1,∴舍去.
當(dāng)1<b<3時(shí),由f'(x)=0得x=b∈(1,3)
當(dāng)x∈(1,b)時(shí),f'(x)<0,∴f(x)在[1,b]上為減函數(shù);
當(dāng)x∈(b,3)時(shí),f'(x)>0,∴f(x)在[b,3]上為增函數(shù),
∴f(x)min=f(b)=lnb;
令lnb=$\frac{1}{3}$,得b=${e}^{\frac{1}{3}}$;
當(dāng)b≥3時(shí),f'(x)<0在(1,3)恒成立,此時(shí)f(x)在[1,3]上為減函數(shù).
∴f(x)min=f(3)=ln3+$\frac{3}$-1
令ln3+$\frac{3}$-1=$\frac{1}{3}$,得b=4-3ln3<2,故舍去;
綜上:b=${e}^{\frac{1}{3}}$;
點(diǎn)評(píng) 本題主要考查了導(dǎo)數(shù)與斜率關(guān)系,直線垂直關(guān)系以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值問(wèn)題,屬中等題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 7或8 | C. | 8 | D. | 8或9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{5}$ | B. | $\frac{5}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com