已知橢圓數(shù)學(xué)公式的離心率為數(shù)學(xué)公式,且經(jīng)過(guò)點(diǎn)數(shù)學(xué)公式
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線l過(guò)右焦點(diǎn)F與橢圓C交于M,N兩點(diǎn),若AM、AN的斜率k1,k2滿足k1+k2=m(定值m≠0),求直線l的斜率.

解:(1)∵橢圓離心率為,
,∴(2分)
又橢圓經(jīng)過(guò)點(diǎn),∴
解得c=1,∴(3分)
∴橢圓C的方程是…(4分)
(2)若直線l斜率不存在,顯然k1+k2=0不合題意 …(5分)
設(shè)直線方程為l:y=k(x-1),M(x1,y1),N(x2,y2
聯(lián)立方程組得(3+4k2)x2-8k2x+4k2-12=0…(7分)
…(8分)
∴k1+k2===
==k()=-
∵k1+k2=m,∴-=m,
∴k=
分析:(1)利用橢圓的離心率為,且經(jīng)過(guò)點(diǎn),可求幾何量,從而可得橢圓的方程;
(2)設(shè)出直線方程與橢圓方程聯(lián)立,利用韋達(dá)定理及k1+k2=m(定值m≠0),即可求直線l的斜率.
點(diǎn)評(píng):本題考查橢圓的幾何性質(zhì),考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開家前能得到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過(guò)原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊(cè)答案