3.若復(fù)數(shù)z滿足:z(3+3i)=1-2i,則z的虛部為$-\frac{1}{2}$.

分析 把已知等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:由z(3+3i)=1-2i,得$z=\frac{1-2i}{3+3i}=\frac{(1-2i)(3-3i)}{(3+3i)(3-3i)}=\frac{-3-9i}{18}$=$-\frac{1}{6}-\frac{i}{2}$,
∴z的虛部為-$\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有公共焦點,且離心率$e=\frac{5}{3}$的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lg(2+x)-lg(2-x).
(1)判定函數(shù)f(x)的奇偶性,并加以證明;
(2)判定f(x)的單調(diào)性(不用證明),并求不等式f(1-x)+f(3-2x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若x、y滿足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{y≤x}\\{y≥1}\end{array}\right.$,z=ax+y最大時的最優(yōu)解有無數(shù)個,則a=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.水是最常見的物質(zhì)之一,是包括人類在內(nèi)所有生命生存的重要資源,也是生物體最重要的組成部分,為了推動對水資源迸行綜合性統(tǒng)籌規(guī)劃和管理,加強水資源保護,解決日益嚴峻的淡水缺乏問題,開展廣泛的宣傳以提高公眾對開發(fā)和保護水資源的認識,中國水利部確定每年的3月22日至28日為“中國水周”,以提倡市民節(jié)約用水.某市統(tǒng)計局凋查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如圖所示.將月用水量落人各組的頻率視為概率,并假設(shè)每天的用水量相互獨立.
(I)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計該地家庭的平均用水量;
(Ⅱ)求在未來連續(xù)3個月里,有連續(xù)2個月的月用水量都不低于12噸且另1個月的用水量低于4噸的概率;
(Ⅲ)用X表示在未來3個月里月用水量不低于12噸的月數(shù),求隨機變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,角A,B,C對應(yīng)的邊分別為a,b,c.若a2=(b+c)2-bc,則A$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.等差數(shù)列{an}中,d<0.
(1)若|a3|=|a9|,則數(shù)列{an}的前幾項的和最大?
(2)若Sm=Sk,則數(shù)列{an}的前幾項的和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某普通高中組隊參加中學(xué)生辯論賽,文科班推薦了3名男生、4名女生,理科班推薦了3名男生、2名女生,他們各有所長,總體水平相當,學(xué)校擬從這12名學(xué)生隨機抽取3名男生、3名女生組隊集訓(xùn).
(Ⅰ)求理科班至少有2名學(xué)生入選集訓(xùn)隊的概率;
(Ⅱ)若先抽取女生,每次隨機抽取1人,設(shè)X表示直到抽到文科班女生時所抽到的理科班女生的人數(shù),求X的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,直角三角形ABC中,∠BAC=60°,點F在斜邊AB上,且AB=4AF.D,E是平面ABC同一側(cè)的兩點,AD⊥平面ABC,BE⊥平面ABC,AD=3,AC=BE=4.
(Ⅰ)求證:平面CDF⊥平面CEF;
(Ⅱ)點M在線段BC上,異面直線CF與EM所成角的余弦值為$\frac{1}{4}$,求CM的長.

查看答案和解析>>

同步練習(xí)冊答案