8.在△ABC中,角A,B,C對應(yīng)的邊分別為a,b,c.若a2=(b+c)2-bc,則A$\frac{2π}{3}$.

分析 利用余弦定理即可得出.

解答 解:在△ABC中,∵a2=(b+c)2-bc,
∴b2+c2-a2=-bc.
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$.
A∈(0,π).
∴A=$\frac{2}{3}π$.
故答案為:$\frac{2π}{3}$.

點評 本題考查了余弦定理的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)直線x-3y+t=0(t≠0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線分別交于點A,B.若點M(t,0)滿足|MA|=|MB|,則雙曲線的漸近線方程為(  )
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}$xD.y=±$\frac{1}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$(t為參數(shù)).
(1)將直線l與橢圓C的參數(shù)方程均化為普通方程;
(2)設(shè)直線l與橢圓C的兩個交點分別為A,B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.新疆某中學(xué)共有教師32人,其中男教師12人,女教師20人,這32名教師的身高如下面的莖葉圖所示(單位:cm).為“打擊疆獨分子,確保學(xué)校師生安全”,校委會決定:身高在175cm以上(含175cm)的男教師和身高在172cm以上(含172cm)的女教師組成“校外巡邏隊”,其余教師組成“校內(nèi)巡邏隊”.
(1)若用分層抽樣的方法從“校外巡邏隊員”和“校內(nèi)巡邏隊員”中抽取中選8人,然后在從這8人中選3人,求至少有1人是“校外巡邏隊員”的概率;
(2)若從所有“校外巡邏隊員”中選2人作為“校外巡邏隊”隊長,用X表示“校外巡邏隊”隊長為女教師的人數(shù),試寫出X的分布列,并求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若復(fù)數(shù)z滿足:z(3+3i)=1-2i,則z的虛部為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等差數(shù)列{an}的首項a1=1,公差d>0,數(shù)列{bn}是等比數(shù)列,且b2=a2,b3=a5,b4=a14
(I)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{cn}對任意正整數(shù)n,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$成立,求c1+c2+…+c2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.多次執(zhí)行如圖所示的程序框圖,輸出的$\frac{m}{n}$的值會穩(wěn)定在某個常數(shù)附近,則這個常數(shù)為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=|ax-1|(x∈R),不等式f(x)≤3的解集為{x|-2≤x≤1}.
(1)求a的值;
(2)若f(x)-2f(${\frac{x}{2}}$)>$\frac{-a}{x^2}$+$\frac{k}{2}{x^2}$+k的解集非空,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.己知函數(shù)f(x)=$\frac{1}{2}$x2+ln(-x).數(shù)列{xn}(xn<0)的第一項x1=-$\frac{2}{3}$,其前n項和為Sn,以后各項及Sn均按如下方式給定:曲線y=f(x)在點(Sn,f(Sn))處的切線的斜率為xn-2(n≥2,n∈N+).
(1)試計算S1、S2、S3、S4,并由此猜想Sn(只含n)的表達式;
(2)證明(1)的猜想,并求出數(shù)列{xn}的通項.

查看答案和解析>>

同步練習(xí)冊答案