7.已知公比小于1的等比數(shù)列{an}的前n項和為Sn,a1=$\frac{2}{3}$且10a2-3a1=3a3(n∈N*
(1)求數(shù)列{an}的通項公式:
(2)設bn=log3(1-Sn+1),若$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}b3}$+…+$\frac{1}{_{n}_{n+1}}$=$\frac{25}{51}$,求n.

分析 (1)由題意可得等比數(shù)列{an}公比為q,把a2、a3用a1表示,求得a2,進一步求出a1,代入等比數(shù)列的前n項和得答案,
(2)根據求得的bn=-n-1,$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n+1}-\frac{1}{n+2}$,利用“裂項求和”即可得出,$\frac{1}{2}$$-\frac{1}{n+2}$=$\frac{25}{51}$,解得n的值.

解答 解:(1)設等比數(shù)列{an}公比為q,
a1=$\frac{2}{3}$,10a2-3a1=3a3(n∈N*),
∴10q=3+2q2,解得:q=$\frac{1}{3}$,q=3(舍去),
∴${a}_{n}=\frac{2}{3}•$($\frac{2}{3}$)n-1=2•($\frac{2}{3}$)n
(2)等比數(shù)列{an}的前n項和為Sn,Sn=$\frac{\frac{2}{3}[1-(\frac{1}{3})^{n+1}]}{1-\frac{1}{3}}$=1-($\frac{2}{3}$)n+1
bn=log3(1-Sn+1)=$lo{g}_{3}(\frac{1}{3})^{n+1}$=-n-1,
$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
若$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}b3}$+…+$\frac{1}{_{n}_{n+1}}$=($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n+1}-\frac{1}{n+2}$),
=$\frac{1}{2}$$-\frac{1}{n+2}$,
∴$\frac{1}{2}$$-\frac{1}{n+2}$=$\frac{25}{51}$,
∴n=100.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、“裂項求和”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.不等式$\frac{1}{x}$>1的解集為( 。
A.(-∞,1)B.(0,1)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.雙曲線C的漸近線方程為y=±$\sqrt{2}$x,則C的離心率為(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$\frac{\sqrt{6}}{2}$或$\sqrt{6}$D.$\sqrt{3}$或$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠DAB是直角,AB∥CD,AD=CD=2AB=2,E、F分別為PC、CD的中點.
(Ⅰ)試證:AB⊥平面BEF;
(Ⅱ)若VC-BEF=1,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.正整數(shù)2520的正約數(shù)(包括1和本身)共有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.用更相減損術求得81與135的最大公約數(shù)是(  )
A.54B.27C.9D.81

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)設中心在原點的橢圓與雙曲線2x2-2y2=1有公共的焦點,且它們的離心率互為倒數(shù),求該橢圓的標準方程.
(2)求以橢圓3x2+13y2=39的焦點為焦點,以直線y=±$\frac{x}{2}$為漸近線的雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知拋物線C:y2=2px(p>0)的焦點是F,點D(1,y0)是拋物線C上的點,且|DF|=3.
(1)若直線l經過點F交拋物線C于A、B兩點,當$\overrightarrow{AF}$=4$\overrightarrow{FB}$時,求直線l的方程;
(2)已知點M(m,0)(m>0),過點M作直線l1交拋物線C于P、Q兩點,G是線段PQ的中點,過點M作與直線l1垂直的直線l2交拋物線C于S、T兩點,H是線段ST的中點(如圖所示),求△MGH面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知A(xA,yA)是單位圓(圓心為坐標原點O,半徑為1)上任一點,將射線OA繞點O逆時針旋轉$\frac{π}{6}$到OB交單位圓于點B(xB,yB),已知m>0,若myA-2yB的最大值為2,則實數(shù)m的值為2$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案