2.函數(shù)f(x)=x3-ax2+x在點(diǎn)(1,f(1))處的切線(xiàn)與x+6y=0垂直,則實(shí)數(shù)a=-1.

分析 求出原函數(shù)的導(dǎo)函數(shù),得到f′(1)=4-2a,由題意可得(4-2a)×(-$\frac{1}{6}$)=-1,則a值可求.

解答 解:∵f(x)=x3-ax2+x,
∴f′(x)=3x2-2ax+1,則f′(1)=4-2a,
又函數(shù)f(x)=x3-ax2+x在點(diǎn)(1,f(1))處的切線(xiàn)與x+6y=0垂直,
∴(4-2a)×(-$\frac{1}{6}$)=-1,得a=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究過(guò)曲線(xiàn)上某點(diǎn)處的切線(xiàn)方程,過(guò)曲線(xiàn)上某點(diǎn)處的切線(xiàn)的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1=Sn+2an,則a10=( 。
A.511B.512C.1023D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=|x-a|.
(Ⅰ)當(dāng)a=2,解不等式f(x)≥4-|x-1|;
(Ⅱ)若f(x)≤1的解集為[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0),求證:m+2n≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{\frac{2-x}{3+x}}$+ln(3x$-\frac{1}{3}$)的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M時(shí),求g(x)=4${\;}^{x+\frac{1}{2}}$-2x+2+1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f1(x)=sinx,定義fn+1(x)為fn(x)的導(dǎo)數(shù),即f${\;}_{n+{1}_{\;}}$(x)=fn′(x),n∈N*,若△ABC的內(nèi)角A滿(mǎn)足f1(A)+f2(A)+…+f2018(A)=0,則cosA的值為(  )
A.1B.-1C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,a+c=5,b=$\sqrt{15}$,cosB=$\frac{1}{4}$.
(1)求a,c的值;
(2)求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)是F1、F2,M為橢圓上與F1、2不共線(xiàn)的任意一點(diǎn),I為△MF1F2的內(nèi)心,延長(zhǎng)MI交線(xiàn)段F1F2于點(diǎn)N,則|MI|:|IN|的值等于( 。
A.$\frac{a}$B.$\frac{a}{c}$C.$\frac{c}$D.$\frac{c}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某校運(yùn)動(dòng)會(huì),高二理三個(gè)班級(jí)的3名同學(xué)報(bào)名參加鉛球、跳高、三級(jí)跳遠(yuǎn)3個(gè)運(yùn)動(dòng)項(xiàng)目,每名同學(xué)都可以從3個(gè)運(yùn)動(dòng)項(xiàng)目中隨機(jī)選擇一個(gè),且每個(gè)人的選擇互相獨(dú)立.
(Ⅰ)求3名同學(xué)恰好選擇了2個(gè)不同運(yùn)動(dòng)項(xiàng)目的概率;
(Ⅱ)設(shè)選擇跳高的人數(shù)為ξ,試求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知角α的終邊在第四象限,且sinα=-$\frac{\sqrt{3}}{2}$,則tanα的值為( 。
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案