2.已知角α的終邊在第四象限,且sinα=-$\frac{\sqrt{3}}{2}$,則tanα的值為( 。
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式即可計(jì)算得解.

解答 解:∵角α的終邊在第四象限,且sinα=-$\frac{\sqrt{3}}{2}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{1}{2}$,tan$α=\frac{sinα}{cosα}$=-$\sqrt{3}$.
故選:A.

點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=x3-ax2+x在點(diǎn)(1,f(1))處的切線與x+6y=0垂直,則實(shí)數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.用系統(tǒng)抽樣的方法從某校600名高二學(xué)生中抽取容量為20的樣本,將600名學(xué)生隨機(jī)編號為1~600,按編號順序平均分為20個(gè)組(1~30號,31~60號,…,571~600號),若第1組中用抽簽的方法確定抽出的號碼為2,則第4組抽取的號碼為92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i為虛數(shù)單位,若$\frac{2+i}{z}$=1-i,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.$\frac{1}{2}$+$\frac{3}{2}$iB.$\frac{1}{2}$-$\frac{3}{2}$iC.$\frac{\sqrt{2}}{2}$+$\frac{3\sqrt{2}}{2}$iD.$\frac{\sqrt{2}}{2}$-$\frac{3\sqrt{2}}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)點(diǎn)M是線段BC的中點(diǎn),點(diǎn)A在直線BC外,且|$\overrightarrow{BC}$|=6,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,則|$\overrightarrow{AM}$|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將函數(shù)y=2sin(x-$\frac{π}{6}$)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再將得到的圖象向左平移$\frac{π}{3}$個(gè)單位長度后,所得圖象的一條對稱軸方程為( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{8}$C.x=-$\frac{π}{4}$D.x=-$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=cos2x-sin2x+2$\sqrt{3}$sinxcosx.
(I)求f(x)的最小正周期.
(II)求f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列推理是類比推理的是( 。
A.由周期函數(shù)的定義判斷某函數(shù)是否為周期函數(shù)
B.由6=3+3,8=3+5,10=3+7,猜想任何一個(gè)不小于6的偶數(shù)都是兩個(gè)奇質(zhì)數(shù)之和
C.平面內(nèi)不共線的3個(gè)點(diǎn)確定一個(gè)圓,由此猜想空間中不共面的4個(gè)點(diǎn)確定一個(gè)球
D.已知A,B為定點(diǎn),若動(dòng)點(diǎn)P滿足|PA|+|PB|=2a>|AB|(其中a為常數(shù)),則點(diǎn)P的軌跡為橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.向量$\overrightarrow a=(2,2),\overrightarrow b=(m,-1)$,若$\overrightarrow a$∥$\overrightarrow b$,則$\left|{\overrightarrow a+\overrightarrow b}\right|$=$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案