【題目】設(shè)函數(shù)由方程到確定,對(duì)于函數(shù)給出下列命題:
①對(duì)任意,都有恒成立:
②,使得且同時(shí)成立;
③對(duì)于任意恒成立;
④對(duì)任意,,
都有恒成立.其中正確的命題共有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】B
【解析】
分四類情況進(jìn)行討論,畫出相對(duì)應(yīng)的函數(shù)圖象,由函數(shù)圖象判斷所給命題的真假性.
由方程知,
當(dāng)x≥0且y≥0時(shí),方程為y2=1;
當(dāng)x<0且y<0時(shí),方程為y2=1,不成立;
當(dāng)x≥0且y<0時(shí),方程為y2=1;
當(dāng)x<0且y≥0時(shí),方程為y2=1;
作出函數(shù)f(x)的圖象如圖所示,
對(duì)于①,f(x)是定義域R上的單調(diào)減函數(shù),則
對(duì)任意x1,x2∈R,x1≠x2,都有恒成立,①正確;
對(duì)于②,假設(shè)點(diǎn)(a,b)在第一象限,則點(diǎn)(b,a)也在第一象限,
所以,該方程組沒有實(shí)數(shù)解,所以該情況不可能;
假設(shè)點(diǎn)(a,b)在第四象限,則點(diǎn)(b,a)在第二象限,
所以,該方程組沒有實(shí)數(shù)解,所以該種情況不可能;
同理點(diǎn)(a,b)在第二象限,則點(diǎn)(b,a)在第四象限,也不可能.
故該命題是假命題.
對(duì)于③,由圖形知,對(duì)于任意x∈R,有f(x)x,
即2f(x)+x>0恒成立,③正確;
對(duì)于④,不妨令t,則tf(x1)+(1﹣t)f(x2)﹣f[tx1+(1﹣t)x2]>0為
f(),不是恒成立,所以④錯(cuò)誤.
綜上知,正確的命題序號(hào)是①③.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.設(shè)數(shù)列的前n項(xiàng)和為且滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)若求正整數(shù)的值;
(3)是否存在正整數(shù),使得恰好為數(shù)列的一項(xiàng)?若存在,求出所有滿足條件的正整數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,若對(duì)任意正整數(shù)n,總存在正整數(shù)m,使得,則稱是“H數(shù)列”;
(1)若數(shù)列的前n項(xiàng)和(),判斷數(shù)列是否是“H數(shù)列”?若是,給出證明;若不是,說明理由;
(2)設(shè)數(shù)列是常數(shù)列,證明:為“H數(shù)列”的充要條件是;
(3)設(shè)是等差數(shù)列,其首項(xiàng),公差,若是“H數(shù)列”,求d的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,其中m是不等于零的常數(shù).
(1)時(shí),直接寫出的值域;
(2)求的單調(diào)遞增區(qū)間;
(3)已知函數(shù),,定義:,,,,其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.例如:,,則,,,.當(dāng)時(shí),恒成立,求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知曲線的方程為,曲線的方程為.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系.
(1)求曲線,的直角坐標(biāo)方程;
(2)若曲線與軸相交于點(diǎn),與曲線相交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)是函數(shù)數(shù)的導(dǎo)函數(shù),記,若在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)實(shí)數(shù),求證:對(duì)任意實(shí)數(shù),總有成立.
附:簡單復(fù)合函數(shù)求導(dǎo)法則為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,并且,,數(shù)列滿足:,,記數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
(2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
(3)記集合,若的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.若存在實(shí)數(shù),使得關(guān)于的方程有三個(gè)不同的解,且函數(shù)僅有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com