求經(jīng)過(guò)直線l1:x+y+3=0與直線l2:x-y-1=0的交點(diǎn)P,且分別滿(mǎn)足下列條件的直線方程:
(Ⅰ)與直線2x+y-3=0平行;
(Ⅱ)與直線2x+y-3=0垂直.
考點(diǎn):直線的一般式方程與直線的平行關(guān)系,直線的一般式方程與直線的垂直關(guān)系
專(zhuān)題:直線與圓
分析:
x+y+3=0
x-y-1=0
,解得P(-1,-2).
(1)設(shè)與直線2x+y-3=0平行的直線方程為2x+y+m=0,把P(-1,-2)代入即可得出;
(2)設(shè)與直線2x+y-3=0垂直的直線方程為:x-2y+n=0,把P(-1,-2)代入即可得出.
解答: 解:由
x+y+3=0
x-y-1=0
,解得
x=-1
y=-2
,∴P(-1,-2).
(1)設(shè)與直線2x+y-3=0平行的直線方程為2x+y+m=0,
把P(-1,-2)代入可得;-2-2+m=0,解得m=4.
∴要求的直線方程為:2x+y+4=0.
(2)設(shè)與直線2x+y-3=0垂直的直線方程為:x-2y+n=0,
把P(-1,-2)代入可得:-1+4+m=0,解得n=-3.
∴要求的直線方程為:x-2y-3=0.
點(diǎn)評(píng):本題考查了相互平行、垂直的直線方程的求法,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b為非零實(shí)數(shù),且a<b,則下列命題成立的是( 。
A、a2<b2
B、a2b<a3
C、
b
a
a
b
D、
a
a-b
b
a-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=tan(2x-
π
6
),則f(x)的最小正周期為
 
;f(
π
8
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)非零向量
m
=(
3
sinωx,cosωx),
n
=(cosωx,cosωx),
(1)當(dāng)ω=2,x∈(0,π)時(shí),向量
m
n
共線,求x的值;
(2)若函數(shù)f(x)=
m
n
與直線y=
1
2
的任意兩個(gè)交點(diǎn)間的距離為
π
2

①當(dāng)f(
α
2
+
π
24
)=
1
2
+
2
6
,α∈(0,π),求cos2α的值;
②令g(x)=
sinx•cosx
sin
x
2
•cos
π
2
+1
,x∈[0,
π
2
],試求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為橢圓C上一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的焦點(diǎn),且|F1F2|=2
3
,若|PF1|與|PF2|的等差中項(xiàng)為|F1F2|,則橢圓C的標(biāo)準(zhǔn)方程為(  )
A、
x2
12
+
y2
9
=1
B、
x2
12
+
y2
9
=1
x2
9
+
y2
12
=1
C、
x2
9
+
y2
12
=1
D、
x2
48
+
y2
45
=1
x2
45
+
y2
48
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)已知(a+a-12=3,求a3+a-3;
(2)已知a2x=
2
+1
,求
a3x+a-3x
ax+a-x
;
(3)已知x-3+1=a,求a2-2ax-3+x-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=cos(3x+φ)為奇函數(shù),則φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)實(shí)數(shù)a,b(a≠b),滿(mǎn)足aea=beb.命題p:lna+a=lnb+b;命題q:(a+1)(b+1)>0,則下列命題正確的是( 。
A、p真q假B、p假q真
C、p真q真D、p假q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:
2
x
<x;命題q:log2x2>1;則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不必要也不充分條件

查看答案和解析>>

同步練習(xí)冊(cè)答案