2.求下列函數(shù)的單調(diào)區(qū)間.
(1)y=-x2+2|x|+3;
(2)y=log2(x2-1)

分析 作出函數(shù)的圖象,根據(jù)圖象,即可得出函數(shù)的單調(diào)區(qū)間.

解答 解:(1)y=-x2+2|x|+3,圖象如圖所示

函數(shù)的單調(diào)增區(qū)間是(-∞,-1),(0,1);單調(diào)減區(qū)間是(-1,0),(1,+∞);
(2)y=log2(x2-1),圖象如圖所示

函數(shù)的單調(diào)減區(qū)間是(-∞,-1);單調(diào)增區(qū)間是(1,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)區(qū)間,考查函數(shù)圖象的作法,正確作出函數(shù)的圖象是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)直線l:x+2y-2=0,交橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1于A、B兩點(diǎn),在橢圓C上找一點(diǎn)P,使△ABP面積最大,求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=5,a2=13,an+2=5an+1-6an,則使該數(shù)列的n項(xiàng)和Sn不小于2016的最小自然數(shù)n等于7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“m>2”是“函數(shù)f(x)=m+log2x(x≥$\frac{1}{2}$)不存在零點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C的圓心在射線y=x一4(y≥0)上,在x軸上截得的弦長(zhǎng)為4,且過點(diǎn)(2,0).求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|1<2x<4},B={x|x-1≥0},則A∩B=( 。
A.{x|1≤x<2}B.{x|0<x≤1}C.{x|0<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x},x≥4}\\{f(x+1)\;\;,x<4}\end{array}}$,則f(2+log23)的值為( 。
A.24B.16C.12D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}的通項(xiàng)公式為an=(-1)n•n+2n,n∈N*,則這個(gè)數(shù)列的前n項(xiàng)和Sn=$\left\{\begin{array}{l}{{2}^{n+1}-\frac{n+5}{2},}&{n為奇數(shù)}\\{{2}^{n+1}+\frac{n-4}{2},}&{n為偶數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)的定義域D關(guān)于原點(diǎn)對(duì)稱,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=$\frac{f({x}_{1})-f({x}_{2})}{1+f({x}_{1})f({x}_{2})}$,
(1)在我們學(xué)過的函數(shù)中,寫出f(x)的一個(gè)函數(shù)解析式,并說明其符合題設(shè)條件;
(2)若存在正常數(shù)T使得等式f(x-T)=f(x)對(duì)于x∈D都成立,則稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個(gè)周期T;若不是,則說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案