一個口袋中裝有大小相同的8個白球和7個黑球,從中任意摸出2個球,則摸出的2個球至少有一個是白球的概率是
86
105
86
105
(用數(shù)字作答)
分析:本題是一個等可能事件的概率,試驗發(fā)生所包含的事件從口袋中裝有大小相同的7個黑球8個白球的口袋中摸出兩個球,滿足條件的事件是取出的球中至少有一個是白球包括有一白一黑和兩個白球兩種情況,表示出結(jié)果數(shù),得到概率
解答:解:由題意知本題是一個等可能事件的概率,
試驗發(fā)生所包含的事件從口袋中裝有大小相同的7個黑球8個白球的口袋中摸出兩個球,共有C152=105種結(jié)果,
滿足條件的事件是取出的球中至少有一個是白球包括有一白一黑和兩個白球兩種情況,共有C71C81+C82=86
故取出的兩個球中至少有一個白球的概率P=
86
105

故答案為:
86
105
點評:本題考查等可能事件的概率,本題解題的關(guān)鍵是計算出所有取法的基本事件總數(shù),及兩個球中至少有一個白球的基本事件個數(shù),本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中裝有大小相同的2個白球和3個黑球,從中摸出一個球,放回后再摸出一個球,則兩次摸出的球恰好顏色不同的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(I)試用n表示一次摸獎中獎的概率p;
(II)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為m,用p表示恰有一次中獎的概率m,求m的最大值及m取最大值時p、n的值;
(III)當(dāng)n=15時,將15個紅球全部取出,全部作如下標記:記上i號的有i個(i=1,2,3,4),共余的紅球記上0號.并將標號的15個紅球放人另一袋中,現(xiàn)從15個紅球的袋中任取一球,ξ表示所取球的標號,求ξ的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州模擬)一個口袋中裝有大小相同的2個白球和4個黑球.
(1)采取放回抽樣方式,從中摸出兩個球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個球,求摸得白球的個數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•孝感模擬)一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(1)記三次摸獎(每次摸獎后放回)恰有一次中獎的概率為P.試問當(dāng)n等于多少時,P的值最大?
(2)在(1)的條件下,將5個白球全部取出后,對剩下的n個紅球全部作如下標記:記上i號的有i個(i=1,2,3,4),其余的紅球記上0號,現(xiàn)從袋中任取一球.ξ表示所取球的標號,求ξ的分布列,期望和方差.

查看答案和解析>>

同步練習(xí)冊答案