【題目】已知命題方程表示焦點在軸上的橢圓,命題雙曲線的離心率,若“”為假命題,“”為真命題,則的取值范圍是__________

【答案】

【解析】分析:根據(jù)橢圓的性質(zhì),可求出命題方程表示焦點在軸上的橢圓為真命題時,實數(shù)的取值范圍;根據(jù)雙曲線的性質(zhì),可得命題雙曲線的離心率為真命題時,實數(shù)的取值范圍;進(jìn)而結(jié)合“”為假命題,“”為真命題即命題中有且只有一個為真命題,得到答案.

詳解:若命題方程表示焦點在軸上的橢圓為真命題時;

解得
則命題為假命題時,,
若命題雙曲線的離心率為真命題時;

則命題為假命題時,,或 ,
∵“”為假命題,“”為真命題,一次命題中有且只有一個為真命題,
當(dāng)假時,0,
當(dāng)真時,,
綜上所述,實數(shù)的取值范圍是:,或
故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種農(nóng)作物可以生長在灘涂和鹽堿地,它的灌溉是將海水稀釋后進(jìn)行灌溉.某實驗基地為了研究海水濃度對畝產(chǎn)量(噸)的影響,通過在試驗田的種植實驗,測得了該農(nóng)作物的畝產(chǎn)量與海水濃度的數(shù)據(jù)如下表:

海水濃度

畝產(chǎn)量(噸)

殘差

繪制散點圖發(fā)現(xiàn),可以用線性回歸模型擬合畝產(chǎn)量(噸)與海水濃度之間的相關(guān)關(guān)系,用最小二乘法計算得之間的線性回歸方程為.

(1)求的值;

(2)統(tǒng)計學(xué)中常用相關(guān)指數(shù)來刻畫回歸效果,越大,回歸效果越好,如假設(shè),就說明預(yù)報變量的差異有是解釋變量引起的.請計算相關(guān)指數(shù)(精確到),并指出畝產(chǎn)量的變化多大程度上是由澆灌海水濃度引起的?

(附:殘差,相關(guān)指數(shù),其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的蓬勃發(fā)展,越來越多的人將共享單車作為短距離出行的交通工具.為了解不同年齡的人們騎乘單車的情況,某共享單車公司對某區(qū)域不同年齡的騎乘者進(jìn)行了調(diào)查,得到數(shù)據(jù)如下:

年齡

15

25

35

45

55

65

騎乘人數(shù)

95

80

65

40

35

15

(1)求關(guān)于的線性回歸方程,并估計年齡為40歲人群的騎乘人數(shù);

(2)為了回饋廣大騎乘者,該公司在五一當(dāng)天通過向每位騎乘者的前兩次騎乘分別隨機(jī)派送一張面額為1元,或2元,或3元的騎行券.已知騎行一次獲得1元券,2元券,3元券的概率分別是,,,且每次獲得騎行券的面額相互獨立.若一名騎乘者五一當(dāng)天使用了兩次該公司的共享單車,記該騎乘者當(dāng)天獲得的騎行券面額之和為,求的分布列和數(shù)學(xué)期望.

參考公式: .

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知球為正四面體的外接球,,過點作球的截面,則截面面積的取值范圍為____________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校選派甲、乙、丙、丁、戊5名學(xué)生代表學(xué)校參加市級“演講”和“詩詞”比賽,下面是他們的一段對話甲說:“乙參加‘演講’比賽”;乙說:“丙參加‘詩詞’比賽”;丙說“丁參加‘演講’比賽”;丁說:“戊參加‘詩詞’比賽”;戊說:“丁參加‘詩詞’比賽”

已知這5個人中有2人參加演講比賽,3人參加詩詞比賽,其中有2人說的不正確且參加“演講”的2人中只有1人說的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學(xué)生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形內(nèi)的圖形來自中國古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分位于正方形的中心成中心對稱,在正方形內(nèi)隨機(jī)取一點,則此點取自黑色部分的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列,是公差分別為的等差數(shù)列,記),其中表示不超過的最大整數(shù),即.

1)直接寫出數(shù)列,的前4項,使得數(shù)列的前4項為:2,3,4,5;

2)若,求數(shù)列的前項的和;

3)求證:數(shù)列為等差數(shù)列的必要非充分條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該產(chǎn)品在試銷一個階段后得到銷售單價(單位:元)和銷售量(單位:萬件)之間的一組數(shù)據(jù),如下表所示:

銷售單價/元

銷售量/萬件

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)從反饋的信息來看,消費者對該產(chǎn)品的心理價(單位:元/件)在內(nèi),已知該產(chǎn)品的成本是元,那么在消費者對該產(chǎn)品的心理價的范圍內(nèi),銷售單價定為多少時,企業(yè)才能獲得最大利潤?(注:利潤=銷售收入-成本)

參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,,動點滿足,記M的軌跡為曲線C

1)求曲線C的方程;

2)過坐標(biāo)原點O的直線lCP、Q兩點,點P在第一象限,軸,垂足為H.連結(jié)QH并延長交C于點R

i)設(shè)O到直線QH的距離為d.求d的取值范圍;

ii)求面積的最大值及此時直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案