分析 根據指數函數的圖象和性質,可求出命題p真時c的范圍,根據對勾函數的圖象和性質,可求出命題q真時c的范圍,再由p,q一真一假,可得c的取值范圍.
解答 解:若命題p:函數y=cx為減函數為真,
則c∈(0,1),
x∈[$\frac{1}{2}$,2]時,函數f(x)=x+$\frac{1}{x}$∈[2,$\frac{5}{2}$]
若命題q:當x∈[$\frac{1}{2}$,2]時,函數f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立為真,
則2>$\frac{1}{c}$,則c∈($\frac{1}{2}$,+∞),
若p真q假,則c∈(0,$\frac{1}{2}$],
若p假q真,則c∈[1,+∞),
故c的取值范圍是:(0,$\frac{1}{2}$),
故答案為:(0,$\frac{1}{2}$]∪[1,+∞)
點評 根據指數函數的圖象和性質,可求出命題p真是c的范圍,根據對勾函數的圖象和性質,可求出命題q真是c的范圍,再由p,q一真一假,可得c的取值范圍.
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{3}$ | C. | 1+$\sqrt{3}$ | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -3 | B. | 0 | C. | 6 | D. | 12 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com