12.某制造商制造并出售球型瓶裝的某種飲料.瓶子的制造成本是0.8πr2分,其中r是瓶子的半徑,單位是厘米.已知每出售1mL的飲料,制造商可獲利0.2分,且制造商能制作的瓶子的最大半徑為6cm.問題:
(1)瓶子的半徑多大時,能使每瓶飲料的利潤最大?
(2)瓶子的半徑多大時,每瓶的利潤最小?

分析 先確定利潤函數(shù),再利用求導的方法,即可得到結論.

解答 解:由于瓶子的半徑為r,所以每瓶飲料的利潤是$y=f(r)=0.2×\frac{4}{3}π{r^3}-0.8π{r^2}=0.8π({\frac{r^3}{3}-{r^2}}),0<r≤6$
令f'(r)=0.8π(r2-2r)=0解得  r=2(r=0舍去)
當r∈(0,2)時,f'(r)<0;當r∈(2,6)時,f'(r)>0.
當半徑r>2時,f'(r)>0它表示f(r)單調遞增,即半徑越大,利潤越高;
當半徑r<2時,f'(r)<0它表示f(r)單調遞減,即半徑越大,利潤越低.
(1)半徑為2cm 時,利潤最小,這時f(2)<0,
表示此種瓶內飲料的利潤還不夠瓶子的成本,此時利潤是負值.
(2)半徑為6cm時,利潤最大.

點評 本題考查函數(shù)模型的建立,考查導數(shù)知識的運用,確定函數(shù)的模型是解題的關鍵.同時考查了分析問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=x-1-2sinπx的所有零點之和等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在數(shù)列{an}中,a1=3,2a1+3a2+…+nan-1=(n+1)an(n∈N*,n≥2)
(Ⅰ)計算a2,a3的值,并求數(shù)列{an}的通項an;
(Ⅱ)若存在n∈N*,且n≥2,使得$\frac{{a}_{n}}{{2}^{n}•λ}$≥$\frac{3n}{n-1}$成立,求正實數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=ln$\frac{1}{x}$+ax-1(a≠0).
(I)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)已知g(x)+xf(x)=-x,若函數(shù)g(x)有兩個極值點x1,x2(x1<x2),求證:g(x1)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=|x+1|+|x|(x∈R)的最小值為a.
(1)求a;
(2)已知兩個正數(shù)m,n滿足m2+n2=a,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.不等式|2x-1|-|x+2|>0的解集為$(-∞,-\frac{1}{3})∪(3,+∞)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=xcosx-sinx(x>0).
(1)求函數(shù)f(x)在點(${\frac{π}{2}$,f(${\frac{π}{2}}$))處的切線方程;
(2)記xn為f(x)的從小到大的第n(n∈N*)個極值點,證明:不等式$\frac{1}{x_1^2}$+$\frac{1}{x_2^2}$+$\frac{1}{x_3^2}$+…+$\frac{1}{x_n^2}$<$\frac{7}{{4{π^2}}}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若sinα是有理數(shù),則其值肯定是有理數(shù)的是( 。
A.cosαB.tanαC.sin2αD.cos2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知拋物線C:y2=2px(p>0)的準線方程為x=-1,過定點M(m,0)(m>0)作斜率為k的直線l交拋物線C于A,B兩點,E是M點關于坐標原點O的對稱點,若直線AE和BE的斜率分別為k1,k2,則k1+k2=0.

查看答案和解析>>

同步練習冊答案