9.已知數(shù)列{an}滿足a1=2,an+1=2nan,求an

分析 由已知得$\frac{{a}_{n+1}}{{a}_{n}}$的表達(dá)式,由此利用累乘法能求出an

解答 解:∵數(shù)列{an}滿足an+1=2nan,且a1=2,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=2n,
∴an=$\frac{{a}_{2}}{{a}_{1}}×\frac{{a}_{3}}{{a}_{2}}×\frac{{a}_{4}}{{a}_{3}}×…×\frac{{a}_{n}}{{a}_{n-1}}×{a}_{1}$=2×22×…×2n-1×2
=21+2+3+…+(n-1)×2
=${2}^{\frac{n(n-1)}{2}+1}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意累乘法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,AD是BC邊上的中線,且G點(diǎn)為△ABC的重心,若S△ABC=$\sqrt{3}$,sin2B+sin2C+sinBsinC=sin2A,求|AG|的最小值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.△ABC中,已知sinB=1,b=3,則此三角形( 。
A.無(wú)解B.只有一解C.有兩解D.解的個(gè)數(shù)不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)f(x)=$\left\{\begin{array}{l}{1{0}^{x},x≤0}\\{lo{g}_{5}x,x>0}\end{array}\right.$,則f(-f(2))=${2}^{lo{g}_{5}\frac{1}{2}}×\frac{1}{2}$;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若-$\frac{π}{2}$<x<0,當(dāng)函數(shù)f(x)=$\frac{1+cos2x+1{8sin}^{2}x}{sin2x}$取最大值時(shí),tan2x的值為( 。
A.-2B.-3C.-$\frac{1}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)集合M={x|(x+2)(x-3)<0},N={x|y=log2(x-1)},則M∩N等于( 。
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.把函數(shù)f(x)=sin(2x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后,得到函數(shù)g(x)的圖象,則函數(shù)g(x)=sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(sinx,cosx),設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)設(shè)銳角△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=$\sqrt{6}$,cosB=$\frac{1}{3}$,且f(C)=$\sqrt{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,拋物線y2=2px(p>0)的準(zhǔn)線l與x軸交于點(diǎn)M,過(guò)M的直線與拋物線交于A,B兩點(diǎn).設(shè)A(x1,y1)到準(zhǔn)線l的距離為d,且d=λp(λ>0).
(1)若y1=d=1,求拋物線的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{AM}$+λ$\overrightarrow{AB}$=$\overrightarrow{0}$,求證:直線AB的斜率為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案